# Properties

 Label 10830a Number of curves $2$ Conductor $10830$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("a1")

sage: E.isogeny_class()

## Elliptic curves in class 10830a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10830.a2 10830a1 $$[1, 1, 0, -527428, -204088112]$$ $$-50284268371/26542080$$ $$-8564802689466040320$$ $$$$ $$194560$$ $$2.3370$$ $$\Gamma_0(N)$$-optimal
10830.a1 10830a2 $$[1, 1, 0, -9306948, -10930905648]$$ $$276288773643091/41990400$$ $$13549785504819321600$$ $$$$ $$389120$$ $$2.6836$$

## Rank

sage: E.rank()

The elliptic curves in class 10830a have rank $$1$$.

## Complex multiplication

The elliptic curves in class 10830a do not have complex multiplication.

## Modular form 10830.2.a.a

sage: E.q_eigenform(10)

$$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - 2q^{7} - q^{8} + q^{9} + q^{10} - q^{12} + 2q^{13} + 2q^{14} + q^{15} + q^{16} - 2q^{17} - q^{18} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 