Properties

Label 10830j
Number of curves 2
Conductor 10830
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("10830.l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 10830j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
10830.l2 10830j1 [1, 0, 1, -81594, 9229852] [2] 72960 \(\Gamma_0(N)\)-optimal
10830.l1 10830j2 [1, 0, 1, -1316214, 581105836] [2] 145920  

Rank

sage: E.rank()
 

The elliptic curves in class 10830j have rank \(0\).

Modular form 10830.2.a.l

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 2q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2q^{13} - 2q^{14} - q^{15} + q^{16} - 6q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.