Properties

Label 10830m
Number of curves $1$
Conductor $10830$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 10830m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10830.m1 10830m1 \([1, 0, 1, 11, 32]\) \(463391/1440\) \(-519840\) \([]\) \(1440\) \(-0.21996\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 10830m1 has rank \(1\).

Complex multiplication

The elliptic curves in class 10830m do not have complex multiplication.

Modular form 10830.2.a.m

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 3q^{7} - q^{8} + q^{9} + q^{10} + q^{11} + q^{12} - 2q^{13} - 3q^{14} - q^{15} + q^{16} + 2q^{17} - q^{18} + O(q^{20})\)  Toggle raw display