# Properties

 Label 10830s Number of curves $2$ Conductor $10830$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("s1")

sage: E.isogeny_class()

## Elliptic curves in class 10830s

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10830.r2 10830s1 $$[1, 1, 1, -853231, 15014069]$$ $$212883113611/122880000$$ $$39651864303083520000$$ $$$$ $$583680$$ $$2.4501$$ $$\Gamma_0(N)$$-optimal
10830.r1 10830s2 $$[1, 1, 1, -9632751, 11474043573]$$ $$306331959547531/900000000$$ $$290418928001100000000$$ $$$$ $$1167360$$ $$2.7967$$

## Rank

sage: E.rank()

The elliptic curves in class 10830s have rank $$0$$.

## Complex multiplication

The elliptic curves in class 10830s do not have complex multiplication.

## Modular form 10830.2.a.s

sage: E.q_eigenform(10)

$$q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} - 4q^{7} + q^{8} + q^{9} - q^{10} + 6q^{11} - q^{12} + 4q^{13} - 4q^{14} + q^{15} + q^{16} + 6q^{17} + q^{18} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 