Properties

Label 10830n
Number of curves $2$
Conductor $10830$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 10830n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10830.o2 10830n1 \([1, 0, 1, -293, 1856]\) \(403583419/10800\) \(74077200\) \([2]\) \(3840\) \(0.29078\) \(\Gamma_0(N)\)-optimal
10830.o1 10830n2 \([1, 0, 1, -673, -4072]\) \(4904335099/1822500\) \(12500527500\) \([2]\) \(7680\) \(0.63735\)  

Rank

sage: E.rank()
 

The elliptic curves in class 10830n have rank \(1\).

Complex multiplication

The elliptic curves in class 10830n do not have complex multiplication.

Modular form 10830.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} + q^{9} - q^{10} + 2q^{11} + q^{12} + 4q^{13} + q^{15} + q^{16} - 2q^{17} - q^{18} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.