Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
171.1-a1 171.1-a \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.313808150$ 0.831298097 \( -\frac{9358714467168256}{22284891} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 526841 a - 2252236\) , \( 404829173 a - 1730611020\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(526841a-2252236\right){x}+404829173a-1730611020$
171.1-a2 171.1-a \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.569040751$ 0.831298097 \( \frac{841232384}{1121931} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -2359 a + 10094\) , \( 136703 a - 584400\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2359a+10094\right){x}+136703a-584400$
171.1-b1 171.1-b \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.494175486$ $3.113057546$ 1.630124995 \( -\frac{1413120}{19} a - \frac{13791232}{57} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -34122 a + 145878\) , \( 1749942 a - 7480852\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-34122a+145878\right){x}+1749942a-7480852$
171.1-c1 171.1-c \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.365058442$ $1.080001815$ 2.706567867 \( -\frac{50357871050752}{19} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -92319 a - 302343\) , \( -29828922 a - 97687237\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-92319a-302343\right){x}-29828922a-97687237$
171.1-c2 171.1-c \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.788352814$ $3.240005446$ 2.706567867 \( -\frac{89915392}{6859} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -1119 a - 3663\) , \( -44142 a - 144562\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1119a-3663\right){x}-44142a-144562$
171.1-c3 171.1-c \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.262784271$ $9.720016340$ 2.706567867 \( \frac{32768}{19} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 81 a + 267\) , \( 108 a + 353\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(81a+267\right){x}+108a+353$
171.1-d1 171.1-d \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $6.152988229$ 3.259932801 \( -\frac{1404928}{171} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 281 a - 1192\) , \( -5663 a + 24214\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(281a-1192\right){x}-5663a+24214$
171.1-e1 171.1-e \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.884869071$ 0.998628029 \( \frac{67419143}{390963} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 1018 a + 3337\) , \( 104632 a + 342660\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(1018a+3337\right){x}+104632a+342660$
171.1-e2 171.1-e \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $15.07895257$ 0.998628029 \( -\frac{276137246}{57} a + \frac{1180481203}{57} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 6 a - 18\) , \( -18 a + 81\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(6a-18\right){x}-18a+81$
171.1-e3 171.1-e \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $15.07895257$ 0.998628029 \( \frac{389017}{57} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -182 a - 593\) , \( -2528 a - 8280\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-182a-593\right){x}-2528a-8280$
171.1-e4 171.1-e \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.539476287$ 0.998628029 \( \frac{30664297}{3249} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -782 a - 2558\) , \( 19744 a + 64659\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-782a-2558\right){x}+19744a+64659$
171.1-e5 171.1-e \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.539476287$ 0.998628029 \( \frac{276137246}{57} a + \frac{904343957}{57} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -9960 a + 42585\) , \( -2264742 a + 9681588\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-9960a+42585\right){x}-2264742a+9681588$
171.1-e6 171.1-e \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.769738143$ 0.998628029 \( \frac{115714886617}{1539} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -12182 a - 39893\) , \( 1403704 a + 4597014\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-12182a-39893\right){x}+1403704a+4597014$
171.1-f1 171.1-f \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.434454973$ $14.02540668$ 6.456732522 \( \frac{1413120}{19} a - \frac{18030592}{57} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 4 a - 5\) , \( -5 a + 32\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(4a-5\right){x}-5a+32$
171.1-g1 171.1-g \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.434454973$ $14.02540668$ 6.456732522 \( -\frac{1413120}{19} a - \frac{13791232}{57} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -2 a - 2\) , \( 8 a + 29\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a-2\right){x}+8a+29$
171.1-h1 171.1-h \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.884869071$ 0.998628029 \( \frac{67419143}{390963} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -1018 a + 4355\) , \( -104632 a + 447292\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1018a+4355\right){x}-104632a+447292$
171.1-h2 171.1-h \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.539476287$ 0.998628029 \( -\frac{276137246}{57} a + \frac{1180481203}{57} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 9960 a + 32625\) , \( 2264742 a + 7416846\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(9960a+32625\right){x}+2264742a+7416846$
171.1-h3 171.1-h \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $15.07895257$ 0.998628029 \( \frac{389017}{57} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 182 a - 775\) , \( 2528 a - 10808\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(182a-775\right){x}+2528a-10808$
171.1-h4 171.1-h \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.539476287$ 0.998628029 \( \frac{30664297}{3249} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 782 a - 3340\) , \( -19744 a + 84403\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(782a-3340\right){x}-19744a+84403$
171.1-h5 171.1-h \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $15.07895257$ 0.998628029 \( \frac{276137246}{57} a + \frac{904343957}{57} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -6 a - 12\) , \( 18 a + 63\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a-12\right){x}+18a+63$
171.1-h6 171.1-h \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.769738143$ 0.998628029 \( \frac{115714886617}{1539} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 12182 a - 52075\) , \( -1403704 a + 6000718\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(12182a-52075\right){x}-1403704a+6000718$
171.1-i1 171.1-i \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $6.152988229$ 3.259932801 \( -\frac{1404928}{171} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -279 a - 912\) , \( 5943 a + 19463\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-279a-912\right){x}+5943a+19463$
171.1-j1 171.1-j \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.365058442$ $1.080001815$ 2.706567867 \( -\frac{50357871050752}{19} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 92321 a - 394663\) , \( 29736602 a - 127121496\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(92321a-394663\right){x}+29736602a-127121496$
171.1-j2 171.1-j \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.788352814$ $3.240005446$ 2.706567867 \( -\frac{89915392}{6859} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 1121 a - 4783\) , \( 43022 a - 183921\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1121a-4783\right){x}+43022a-183921$
171.1-j3 171.1-j \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.262784271$ $9.720016340$ 2.706567867 \( \frac{32768}{19} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -79 a + 347\) , \( -28 a + 114\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-79a+347\right){x}-28a+114$
171.1-k1 171.1-k \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.494175486$ $3.113057546$ 1.630124995 \( \frac{1413120}{19} a - \frac{18030592}{57} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 34124 a + 111755\) , \( -1784065 a - 5842665\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(34124a+111755\right){x}-1784065a-5842665$
171.1-l1 171.1-l \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.313808150$ 0.831298097 \( -\frac{9358714467168256}{22284891} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -526839 a - 1725396\) , \( -405356013 a - 1327507243\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-526839a-1725396\right){x}-405356013a-1327507243$
171.1-l2 171.1-l \(\Q(\sqrt{57}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.569040751$ 0.831298097 \( \frac{841232384}{1121931} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 2361 a + 7734\) , \( -134343 a - 439963\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2361a+7734\right){x}-134343a-439963$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.