Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
171.1-a1 171.1-a Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.3138081500.313808150 0.831298097 935871446716825622284891 -\frac{9358714467168256}{22284891} [0 \bigl[0 , a1 -a - 1 , 1 1 , 526841a2252236 526841 a - 2252236 , 404829173a1730611020] 404829173 a - 1730611020\bigr] y2+y=x3+(a1)x2+(526841a2252236)x+404829173a1730611020{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(526841a-2252236\right){x}+404829173a-1730611020
171.1-a2 171.1-a Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.5690407511.569040751 0.831298097 8412323841121931 \frac{841232384}{1121931} [0 \bigl[0 , a1 -a - 1 , 1 1 , 2359a+10094 -2359 a + 10094 , 136703a584400] 136703 a - 584400\bigr] y2+y=x3+(a1)x2+(2359a+10094)x+136703a584400{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2359a+10094\right){x}+136703a-584400
171.1-b1 171.1-b Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.4941754860.494175486 3.1130575463.113057546 1.630124995 141312019a1379123257 -\frac{1413120}{19} a - \frac{13791232}{57} [0 \bigl[0 , a+1 a + 1 , 1 1 , 34122a+145878 -34122 a + 145878 , 1749942a7480852] 1749942 a - 7480852\bigr] y2+y=x3+(a+1)x2+(34122a+145878)x+1749942a7480852{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-34122a+145878\right){x}+1749942a-7480852
171.1-c1 171.1-c Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 2.3650584422.365058442 1.0800018151.080001815 2.706567867 5035787105075219 -\frac{50357871050752}{19} [0 \bigl[0 , a+1 a + 1 , 1 1 , 92319a302343 -92319 a - 302343 , 29828922a97687237] -29828922 a - 97687237\bigr] y2+y=x3+(a+1)x2+(92319a302343)x29828922a97687237{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-92319a-302343\right){x}-29828922a-97687237
171.1-c2 171.1-c Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.7883528140.788352814 3.2400054463.240005446 2.706567867 899153926859 -\frac{89915392}{6859} [0 \bigl[0 , a+1 a + 1 , 1 1 , 1119a3663 -1119 a - 3663 , 44142a144562] -44142 a - 144562\bigr] y2+y=x3+(a+1)x2+(1119a3663)x44142a144562{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1119a-3663\right){x}-44142a-144562
171.1-c3 171.1-c Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2627842710.262784271 9.7200163409.720016340 2.706567867 3276819 \frac{32768}{19} [0 \bigl[0 , a+1 a + 1 , 1 1 , 81a+267 81 a + 267 , 108a+353] 108 a + 353\bigr] y2+y=x3+(a+1)x2+(81a+267)x+108a+353{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(81a+267\right){x}+108a+353
171.1-d1 171.1-d Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 6.1529882296.152988229 3.259932801 1404928171 -\frac{1404928}{171} [0 \bigl[0 , a+1 a + 1 , 1 1 , 281a1192 281 a - 1192 , 5663a+24214] -5663 a + 24214\bigr] y2+y=x3+(a+1)x2+(281a1192)x5663a+24214{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(281a-1192\right){x}-5663a+24214
171.1-e1 171.1-e Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8848690711.884869071 0.998628029 67419143390963 \frac{67419143}{390963} [1 \bigl[1 , a a , 0 0 , 1018a+3337 1018 a + 3337 , 104632a+342660] 104632 a + 342660\bigr] y2+xy=x3+ax2+(1018a+3337)x+104632a+342660{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(1018a+3337\right){x}+104632a+342660
171.1-e2 171.1-e Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 15.0789525715.07895257 0.998628029 27613724657a+118048120357 -\frac{276137246}{57} a + \frac{1180481203}{57} [1 \bigl[1 , a a , 0 0 , 6a18 6 a - 18 , 18a+81] -18 a + 81\bigr] y2+xy=x3+ax2+(6a18)x18a+81{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(6a-18\right){x}-18a+81
171.1-e3 171.1-e Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 15.0789525715.07895257 0.998628029 38901757 \frac{389017}{57} [1 \bigl[1 , a a , 0 0 , 182a593 -182 a - 593 , 2528a8280] -2528 a - 8280\bigr] y2+xy=x3+ax2+(182a593)x2528a8280{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-182a-593\right){x}-2528a-8280
171.1-e4 171.1-e Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.5394762877.539476287 0.998628029 306642973249 \frac{30664297}{3249} [1 \bigl[1 , a a , 0 0 , 782a2558 -782 a - 2558 , 19744a+64659] 19744 a + 64659\bigr] y2+xy=x3+ax2+(782a2558)x+19744a+64659{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-782a-2558\right){x}+19744a+64659
171.1-e5 171.1-e Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.5394762877.539476287 0.998628029 27613724657a+90434395757 \frac{276137246}{57} a + \frac{904343957}{57} [1 \bigl[1 , a a , 0 0 , 9960a+42585 -9960 a + 42585 , 2264742a+9681588] -2264742 a + 9681588\bigr] y2+xy=x3+ax2+(9960a+42585)x2264742a+9681588{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-9960a+42585\right){x}-2264742a+9681588
171.1-e6 171.1-e Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.7697381433.769738143 0.998628029 1157148866171539 \frac{115714886617}{1539} [1 \bigl[1 , a a , 0 0 , 12182a39893 -12182 a - 39893 , 1403704a+4597014] 1403704 a + 4597014\bigr] y2+xy=x3+ax2+(12182a39893)x+1403704a+4597014{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-12182a-39893\right){x}+1403704a+4597014
171.1-f1 171.1-f Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.4344549730.434454973 14.0254066814.02540668 6.456732522 141312019a1803059257 \frac{1413120}{19} a - \frac{18030592}{57} [0 \bigl[0 , a+1 a + 1 , 1 1 , 4a5 4 a - 5 , 5a+32] -5 a + 32\bigr] y2+y=x3+(a+1)x2+(4a5)x5a+32{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(4a-5\right){x}-5a+32
171.1-g1 171.1-g Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.4344549730.434454973 14.0254066814.02540668 6.456732522 141312019a1379123257 -\frac{1413120}{19} a - \frac{13791232}{57} [0 \bigl[0 , a1 -a - 1 , 1 1 , 2a2 -2 a - 2 , 8a+29] 8 a + 29\bigr] y2+y=x3+(a1)x2+(2a2)x+8a+29{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a-2\right){x}+8a+29
171.1-h1 171.1-h Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8848690711.884869071 0.998628029 67419143390963 \frac{67419143}{390963} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 1018a+4355 -1018 a + 4355 , 104632a+447292] -104632 a + 447292\bigr] y2+xy=x3+(a+1)x2+(1018a+4355)x104632a+447292{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1018a+4355\right){x}-104632a+447292
171.1-h2 171.1-h Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.5394762877.539476287 0.998628029 27613724657a+118048120357 -\frac{276137246}{57} a + \frac{1180481203}{57} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 9960a+32625 9960 a + 32625 , 2264742a+7416846] 2264742 a + 7416846\bigr] y2+xy=x3+(a+1)x2+(9960a+32625)x+2264742a+7416846{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(9960a+32625\right){x}+2264742a+7416846
171.1-h3 171.1-h Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 15.0789525715.07895257 0.998628029 38901757 \frac{389017}{57} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 182a775 182 a - 775 , 2528a10808] 2528 a - 10808\bigr] y2+xy=x3+(a+1)x2+(182a775)x+2528a10808{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(182a-775\right){x}+2528a-10808
171.1-h4 171.1-h Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.5394762877.539476287 0.998628029 306642973249 \frac{30664297}{3249} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 782a3340 782 a - 3340 , 19744a+84403] -19744 a + 84403\bigr] y2+xy=x3+(a+1)x2+(782a3340)x19744a+84403{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(782a-3340\right){x}-19744a+84403
171.1-h5 171.1-h Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 15.0789525715.07895257 0.998628029 27613724657a+90434395757 \frac{276137246}{57} a + \frac{904343957}{57} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 6a12 -6 a - 12 , 18a+63] 18 a + 63\bigr] y2+xy=x3+(a+1)x2+(6a12)x+18a+63{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a-12\right){x}+18a+63
171.1-h6 171.1-h Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.7697381433.769738143 0.998628029 1157148866171539 \frac{115714886617}{1539} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 12182a52075 12182 a - 52075 , 1403704a+6000718] -1403704 a + 6000718\bigr] y2+xy=x3+(a+1)x2+(12182a52075)x1403704a+6000718{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(12182a-52075\right){x}-1403704a+6000718
171.1-i1 171.1-i Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 6.1529882296.152988229 3.259932801 1404928171 -\frac{1404928}{171} [0 \bigl[0 , a1 -a - 1 , 1 1 , 279a912 -279 a - 912 , 5943a+19463] 5943 a + 19463\bigr] y2+y=x3+(a1)x2+(279a912)x+5943a+19463{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-279a-912\right){x}+5943a+19463
171.1-j1 171.1-j Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 2.3650584422.365058442 1.0800018151.080001815 2.706567867 5035787105075219 -\frac{50357871050752}{19} [0 \bigl[0 , a1 -a - 1 , 1 1 , 92321a394663 92321 a - 394663 , 29736602a127121496] 29736602 a - 127121496\bigr] y2+y=x3+(a1)x2+(92321a394663)x+29736602a127121496{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(92321a-394663\right){x}+29736602a-127121496
171.1-j2 171.1-j Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.7883528140.788352814 3.2400054463.240005446 2.706567867 899153926859 -\frac{89915392}{6859} [0 \bigl[0 , a1 -a - 1 , 1 1 , 1121a4783 1121 a - 4783 , 43022a183921] 43022 a - 183921\bigr] y2+y=x3+(a1)x2+(1121a4783)x+43022a183921{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1121a-4783\right){x}+43022a-183921
171.1-j3 171.1-j Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2627842710.262784271 9.7200163409.720016340 2.706567867 3276819 \frac{32768}{19} [0 \bigl[0 , a1 -a - 1 , 1 1 , 79a+347 -79 a + 347 , 28a+114] -28 a + 114\bigr] y2+y=x3+(a1)x2+(79a+347)x28a+114{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-79a+347\right){x}-28a+114
171.1-k1 171.1-k Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.4941754860.494175486 3.1130575463.113057546 1.630124995 141312019a1803059257 \frac{1413120}{19} a - \frac{18030592}{57} [0 \bigl[0 , a1 -a - 1 , 1 1 , 34124a+111755 34124 a + 111755 , 1784065a5842665] -1784065 a - 5842665\bigr] y2+y=x3+(a1)x2+(34124a+111755)x1784065a5842665{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(34124a+111755\right){x}-1784065a-5842665
171.1-l1 171.1-l Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.3138081500.313808150 0.831298097 935871446716825622284891 -\frac{9358714467168256}{22284891} [0 \bigl[0 , a+1 a + 1 , 1 1 , 526839a1725396 -526839 a - 1725396 , 405356013a1327507243] -405356013 a - 1327507243\bigr] y2+y=x3+(a+1)x2+(526839a1725396)x405356013a1327507243{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-526839a-1725396\right){x}-405356013a-1327507243
171.1-l2 171.1-l Q(57)\Q(\sqrt{57}) 3219 3^{2} \cdot 19 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.5690407511.569040751 0.831298097 8412323841121931 \frac{841232384}{1121931} [0 \bigl[0 , a+1 a + 1 , 1 1 , 2361a+7734 2361 a + 7734 , 134343a439963] -134343 a - 439963\bigr] y2+y=x3+(a+1)x2+(2361a+7734)x134343a439963{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2361a+7734\right){x}-134343a-439963
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.