Learn more

Refine search


Results (1-50 of 54 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
76050.5-a1 76050.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $0.110987288$ $0.635041399$ 4.510817490 \( \frac{99317171591}{106616250} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( 97\) , \( 297\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}+97{x}+297$
76050.5-a2 76050.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.110987288$ $1.270082799$ 4.510817490 \( \frac{4165509529}{1368900} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -33\) , \( 63\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}-33{x}+63$
76050.5-a3 76050.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $0.443949155$ $2.540165599$ 4.510817490 \( \frac{273359449}{9360} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -13\) , \( -13\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}-13{x}-13$
76050.5-a4 76050.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $0.443949155$ $0.635041399$ 4.510817490 \( \frac{12501706118329}{2570490} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -483\) , \( 4293\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}-483{x}+4293$
76050.5-b1 76050.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.364863272$ 0.729726544 \( -\frac{2656166199049}{2658140160} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -288\) , \( -3092\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-288{x}-3092$
76050.5-b2 76050.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.091215818$ 0.729726544 \( \frac{26465989780414729}{10571870144160} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -6208\) , \( -104276\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-6208{x}-104276$
76050.5-b3 76050.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.182431636$ 0.729726544 \( \frac{17496824387403529}{6580454400} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -5408\) , \( -152596\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-5408{x}-152596$
76050.5-b4 76050.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.091215818$ 0.729726544 \( \frac{71647584155243142409}{10140000} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -86528\) , \( -9789652\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-86528{x}-9789652$
76050.5-c1 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.643455731$ 1.286911463 \( \frac{38454605290066}{37074375} a - \frac{83851858919303}{16477500} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( -408 i + 244\) , \( 129 i + 3963\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(-408i+244\right){x}+129i+3963$
76050.5-c2 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.053621310$ 1.286911463 \( \frac{4896705128958698767967797}{4368390960465187500} a - \frac{3906540643430954043015893}{1456130320155062500} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( 52422 i - 35581\) , \( 6098960 i - 666080\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(52422i-35581\right){x}+6098960i-666080$
76050.5-c3 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.053621310$ 1.286911463 \( -\frac{383496341948920335819376969}{14142751693725585937500} a - \frac{352885130319133178679105551}{42428255081176757812500} \) \( \bigl[1\) , \( 0\) , \( i\) , \( 29802 i + 3759\) , \( 1091984 i + 1705272\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(29802i+3759\right){x}+1091984i+1705272$
76050.5-c4 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.160863932$ 1.286911463 \( \frac{1501414967392817401}{101352072656250} a - \frac{7399582703766907213}{912168653906250} \) \( \bigl[1\) , \( 0\) , \( i\) , \( -573 i + 2949\) , \( 63041 i + 16017\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-573i+2949\right){x}+63041i+16017$
76050.5-c5 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.160863932$ 1.286911463 \( \frac{54171623201829816649}{31452414915349350} a + \frac{1080418009151652883}{3494712768372150} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( 297 i - 1741\) , \( 5735 i + 31891\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(297i-1741\right){x}+5735i+31891$
76050.5-c6 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $0.321727865$ 1.286911463 \( -\frac{1066631458047677}{488714411250} a + \frac{1105304338731938}{2199214850625} \) \( \bigl[1\) , \( 0\) , \( i\) , \( -378 i + 284\) , \( 745 i - 4081\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-378i+284\right){x}+745i-4081$
76050.5-c7 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.214485243$ 1.286911463 \( -\frac{19034303433941453}{12873046875000} a + \frac{35112204753430019}{34328125000000} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( -1008 i - 71\) , \( 11736 i - 1812\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(-1008i-71\right){x}+11736i-1812$
76050.5-c8 76050.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.107242621$ 1.286911463 \( \frac{44012581949831266351}{28282083984375000} a + \frac{23225932440944378401}{21211562988281250} \) \( \bigl[1\) , \( 0\) , \( i\) , \( 3672 i - 1831\) , \( -86960 i + 37580\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(3672i-1831\right){x}-86960i+37580$
76050.5-d1 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.643455731$ 1.286911463 \( -\frac{38454605290066}{37074375} a - \frac{83851858919303}{16477500} \) \( \bigl[1\) , \( 0\) , \( i\) , \( 407 i + 244\) , \( 129 i - 3963\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(407i+244\right){x}+129i-3963$
76050.5-d2 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.053621310$ 1.286911463 \( -\frac{4896705128958698767967797}{4368390960465187500} a - \frac{3906540643430954043015893}{1456130320155062500} \) \( \bigl[1\) , \( 0\) , \( i\) , \( -52423 i - 35581\) , \( 6098960 i + 666080\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-52423i-35581\right){x}+6098960i+666080$
76050.5-d3 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.053621310$ 1.286911463 \( \frac{383496341948920335819376969}{14142751693725585937500} a - \frac{352885130319133178679105551}{42428255081176757812500} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( -29803 i + 3759\) , \( 1091984 i - 1705272\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(-29803i+3759\right){x}+1091984i-1705272$
76050.5-d4 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.160863932$ 1.286911463 \( -\frac{1501414967392817401}{101352072656250} a - \frac{7399582703766907213}{912168653906250} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( 572 i + 2949\) , \( 63041 i - 16017\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(572i+2949\right){x}+63041i-16017$
76050.5-d5 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.160863932$ 1.286911463 \( -\frac{54171623201829816649}{31452414915349350} a + \frac{1080418009151652883}{3494712768372150} \) \( \bigl[1\) , \( 0\) , \( i\) , \( -298 i - 1741\) , \( 5735 i - 31891\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-298i-1741\right){x}+5735i-31891$
76050.5-d6 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $0.321727865$ 1.286911463 \( \frac{1066631458047677}{488714411250} a + \frac{1105304338731938}{2199214850625} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( 377 i + 284\) , \( 745 i + 4081\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(377i+284\right){x}+745i+4081$
76050.5-d7 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.214485243$ 1.286911463 \( \frac{19034303433941453}{12873046875000} a + \frac{35112204753430019}{34328125000000} \) \( \bigl[1\) , \( 0\) , \( i\) , \( 1007 i - 71\) , \( 11736 i + 1812\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(1007i-71\right){x}+11736i+1812$
76050.5-d8 76050.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.107242621$ 1.286911463 \( -\frac{44012581949831266351}{28282083984375000} a + \frac{23225932440944378401}{21211562988281250} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( -3673 i - 1831\) , \( -86960 i - 37580\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(-3673i-1831\right){x}-86960i-37580$
76050.5-e1 76050.5-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.153237366$ $2.921279344$ 3.581193234 \( -\frac{23596843}{48750} a + \frac{19992146}{8125} \) \( \bigl[1\) , \( -i + 1\) , \( i\) , \( -3 i + 6\) , \( 4\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-3i+6\right){x}+4$
76050.5-e2 76050.5-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.306474733$ $1.460639672$ 3.581193234 \( -\frac{42581996227}{25350} a + \frac{173581528357}{76050} \) \( \bigl[1\) , \( -i + 1\) , \( i\) , \( -28 i + 81\) , \( 230 i + 164\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-28i+81\right){x}+230i+164$
76050.5-f1 76050.5-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.153237366$ $2.921279344$ 3.581193234 \( \frac{23596843}{48750} a + \frac{19992146}{8125} \) \( \bigl[1\) , \( i + 1\) , \( i\) , \( 2 i + 6\) , \( 4\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(2i+6\right){x}+4$
76050.5-f2 76050.5-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.306474733$ $1.460639672$ 3.581193234 \( \frac{42581996227}{25350} a + \frac{173581528357}{76050} \) \( \bigl[1\) , \( i + 1\) , \( i\) , \( 27 i + 81\) , \( -230 i + 164\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(27i+81\right){x}-230i+164$
76050.5-g1 76050.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $1.208615532$ 2.417231064 \( -\frac{16022066761}{998400} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -52\) , \( 176\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}-52{x}+176$
76050.5-g2 76050.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.604307766$ 2.417231064 \( \frac{68523370149961}{243360} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -852\) , \( 9936\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}-852{x}+9936$
76050.5-h1 76050.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.144546636$ $0.234718326$ 4.071329356 \( -\frac{3127785311994266947}{137858491849000} a - \frac{32765280950314910759}{1240726426641000} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( -1503 i - 630\) , \( 25525 i - 4419\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(-1503i-630\right){x}+25525i-4419$
76050.5-h2 76050.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.072273318$ $0.469436652$ 4.071329356 \( -\frac{68288296877079}{185646500000} a - \frac{4107969467579}{139234875000} \) \( \bigl[1\) , \( 0\) , \( i\) , \( -3 i - 130\) , \( -725 i + 1019\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-3i-130\right){x}-725i+1019$
76050.5-i1 76050.5-i \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.056416372$ $0.836267582$ 3.774334706 \( \frac{126440702827}{274218750} a - \frac{31439978774}{94921875} \) \( \bigl[1\) , \( i - 1\) , \( i\) , \( 14 i + 44\) , \( 166 i - 194\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(14i+44\right){x}+166i-194$
76050.5-i2 76050.5-i \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.112832745$ $0.418133791$ 3.774334706 \( -\frac{752402565283}{106616250} a + \frac{4844505027173}{12474101250} \) \( \bigl[1\) , \( i - 1\) , \( i\) , \( 239 i - 281\) , \( 2396 i - 1054\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(239i-281\right){x}+2396i-1054$
76050.5-j1 76050.5-j \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.056416372$ $0.836267582$ 3.774334706 \( -\frac{126440702827}{274218750} a - \frac{31439978774}{94921875} \) \( \bigl[1\) , \( -i - 1\) , \( i\) , \( -15 i + 44\) , \( -166 i - 194\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-15i+44\right){x}-166i-194$
76050.5-j2 76050.5-j \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.112832745$ $0.418133791$ 3.774334706 \( \frac{752402565283}{106616250} a + \frac{4844505027173}{12474101250} \) \( \bigl[1\) , \( -i - 1\) , \( i\) , \( -240 i - 281\) , \( -2396 i - 1054\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-240i-281\right){x}-2396i-1054$
76050.5-k1 76050.5-k \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.144546636$ $0.234718326$ 4.071329356 \( \frac{3127785311994266947}{137858491849000} a - \frac{32765280950314910759}{1240726426641000} \) \( \bigl[1\) , \( 0\) , \( i\) , \( 1502 i - 630\) , \( 25525 i + 4419\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(1502i-630\right){x}+25525i+4419$
76050.5-k2 76050.5-k \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.072273318$ $0.469436652$ 4.071329356 \( \frac{68288296877079}{185646500000} a - \frac{4107969467579}{139234875000} \) \( \bigl[i\) , \( 0\) , \( 1\) , \( 2 i - 130\) , \( -725 i - 1019\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}+\left(2i-130\right){x}-725i-1019$
76050.5-l1 76050.5-l \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.036238799$ 1.956895169 \( -\frac{16818951115904497561}{1592332281446400} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -53377\) , \( 5124652\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-53377{x}+5124652$
76050.5-l2 76050.5-l \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.108716398$ 1.956895169 \( \frac{7064514799444439}{4094064000000} \) \( \bigl[i\) , \( 0\) , \( i\) , \( 3998\) , \( -3998\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+3998{x}-3998$
76050.5-l3 76050.5-l \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/6\Z$ $1$ $0.054358199$ 1.956895169 \( \frac{453198971846635561}{261896250564000} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -16002\) , \( -27998\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-16002{x}-27998$
76050.5-l4 76050.5-l \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.018119399$ 1.956895169 \( \frac{73474353581350183614361}{576510977802240} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -872577\) , \( 313799212\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-872577{x}+313799212$
76050.5-m1 76050.5-m \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.112803541$ $2.438138537$ 6.600735904 \( \frac{6967871}{35100} \) \( \bigl[i\) , \( -1\) , \( i\) , \( 5\) , \( 7\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}+5{x}+7$
76050.5-m2 76050.5-m \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.225607083$ $1.219069268$ 6.600735904 \( \frac{10779215329}{1232010} \) \( \bigl[i\) , \( -1\) , \( i\) , \( -45\) , \( 127\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}-45{x}+127$
76050.5-n1 76050.5-n \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/6\Z$ $0.514659436$ $1.540509251$ 6.342700985 \( -\frac{24137569}{561600} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -6\) , \( -36\bigr] \) ${y}^2+i{x}{y}={x}^{3}-6{x}-36$
76050.5-n2 76050.5-n \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.171553145$ $0.513503083$ 6.342700985 \( \frac{17394111071}{411937500} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( 54\) , \( 960\bigr] \) ${y}^2+i{x}{y}={x}^{3}+54{x}+960$
76050.5-n3 76050.5-n \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.343106291$ $0.256751541$ 6.342700985 \( \frac{189208196468929}{10860320250} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -1196\) , \( 15210\bigr] \) ${y}^2+i{x}{y}={x}^{3}-1196{x}+15210$
76050.5-n4 76050.5-n \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/6\Z$ $1.029318873$ $0.770254625$ 6.342700985 \( \frac{967068262369}{4928040} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -206\) , \( -1116\bigr] \) ${y}^2+i{x}{y}={x}^{3}-206{x}-1116$
76050.5-o1 76050.5-o \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $1.150951628$ $0.216937378$ 7.989901744 \( -\frac{168288035761}{73415764890} \) \( \bigl[i\) , \( -1\) , \( i\) , \( -114\) , \( 13093\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}-114{x}+13093$
76050.5-o2 76050.5-o \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $0.575475814$ $1.735499031$ 7.989901744 \( \frac{371694959}{249600} \) \( \bigl[i\) , \( -1\) , \( i\) , \( 16\) , \( -15\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}+16{x}-15$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.