Properties

Label 2.0.4.1-76050.5-c5
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 76050 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+i{x}{y}+{y}={x}^{3}+\left(297i-1741\right){x}+5735i+31891\)
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([1,0]),K([-1741,297]),K([31891,5735])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([1,0]),Polrev([-1741,297]),Polrev([31891,5735])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![1,0],K![-1741,297],K![31891,5735]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((195i+195)\) = \((i+1)\cdot(-i-2)\cdot(2i+1)\cdot(3)\cdot(-3i-2)\cdot(2i+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 76050 \) = \(2\cdot5\cdot5\cdot9\cdot13\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-329437854135i-112884353595)\) = \((i+1)\cdot(-i-2)^{2}\cdot(2i+1)\cdot(3)^{3}\cdot(-3i-2)^{4}\cdot(2i+3)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 121272177023634526022250 \) = \(2\cdot5^{2}\cdot5\cdot9^{3}\cdot13^{4}\cdot13^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{54171623201829816649}{31452414915349350} i + \frac{1080418009151652883}{3494712768372150} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(10 i - 26 : 13 i - 249 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.16086393296723598494513134521443869190 \)
Tamagawa product: \( 288 \)  =  \(1\cdot2\cdot1\cdot3\cdot2^{2}\cdot( 2^{2} \cdot 3 )\)
Torsion order: \(6\)
Leading coefficient: \( 1.2869114637378878795610507617155095352 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-i-2)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((2i+1)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((3)\) \(9\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-3i-2)\) \(13\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((2i+3)\) \(13\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 76050.5-c consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.