Learn more

Refine search


Results (1-50 of 74037 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
25.1-CMa1 25.1-CMa \(\Q(\sqrt{-1}) \) \( 5^{2} \) $0$ $\Z/10\Z$ $-4$ $1$ $9.195427721$ 0.183908554 \( 1728 \) \( \bigl[i + 1\) , \( i\) , \( 1\) , \( -i - 1\) , \( 0\bigr] \) ${y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+i{x}^{2}+\left(-i-1\right){x}$
25.3-CMa1 25.3-CMa \(\Q(\sqrt{-1}) \) \( 5^{2} \) $0$ $\Z/10\Z$ $-4$ $1$ $9.195427721$ 0.183908554 \( 1728 \) \( \bigl[i + 1\) , \( i\) , \( i\) , \( 0\) , \( 0\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+i{x}^{2}$
64.1-CMa1 64.1-CMa \(\Q(\sqrt{-1}) \) \( 2^{6} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $-4$ $1$ $6.875185818$ 0.429699113 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}$
64.1-CMa2 64.1-CMa \(\Q(\sqrt{-1}) \) \( 2^{6} \) $0$ $\Z/4\Z$ $-16$ $1$ $6.875185818$ 0.429699113 \( 287496 \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 2\) , \( 3 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+2{x}+3i$
65.2-a1 65.2-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $0.850436644$ 0.425218322 \( -\frac{157034896049234432}{330078125} a - \frac{128574568523373376}{330078125} \) \( \bigl[i + 1\) , \( 0\) , \( i\) , \( 239 i - 399\) , \( -2869 i + 2627\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(239i-399\right){x}-2869i+2627$
65.2-a2 65.2-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $2.551309934$ 0.425218322 \( -\frac{2088753403392}{34328125} a - \frac{1627055822656}{34328125} \) \( \bigl[i + 1\) , \( i + 1\) , \( 1\) , \( -15 i + 3\) , \( 7 i - 14\bigr] \) ${y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-15i+3\right){x}+7i-14$
65.2-a3 65.2-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $7.653929802$ 0.425218322 \( \frac{732672}{325} a - \frac{3306304}{325} \) \( \bigl[i + 1\) , \( i + 1\) , \( 1\) , \( -2\) , \( -i - 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}-2{x}-i-1$
65.2-a4 65.2-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $0.850436644$ 0.425218322 \( \frac{1110974116587520512}{49591064453125} a - \frac{489671365797093184}{49591064453125} \) \( \bigl[i + 1\) , \( i + 1\) , \( 1\) , \( -60 i + 98\) , \( 372 i + 410\bigr] \) ${y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-60i+98\right){x}+372i+410$
65.2-a5 65.2-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $7.653929802$ 0.425218322 \( -\frac{1183232}{845} a - \frac{851776}{845} \) \( \bigl[i + 1\) , \( 0\) , \( i\) , \( -i + 1\) , \( 0\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}$
65.2-a6 65.2-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $2.551309934$ 0.425218322 \( \frac{356394317312}{603351125} a + \frac{580261889216}{603351125} \) \( \bigl[i + 1\) , \( 0\) , \( i\) , \( 4 i - 4\) , \( -2 i + 5\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(4i-4\right){x}-2i+5$
65.3-a1 65.3-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $0.850436644$ 0.425218322 \( \frac{157034896049234432}{330078125} a - \frac{128574568523373376}{330078125} \) \( \bigl[i + 1\) , \( -i\) , \( i\) , \( -240 i - 399\) , \( 2869 i + 2627\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(-240i-399\right){x}+2869i+2627$
65.3-a2 65.3-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $2.551309934$ 0.425218322 \( \frac{2088753403392}{34328125} a - \frac{1627055822656}{34328125} \) \( \bigl[i + 1\) , \( i - 1\) , \( i\) , \( 14 i + 4\) , \( 7 i + 14\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(14i+4\right){x}+7i+14$
65.3-a3 65.3-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $7.653929802$ 0.425218322 \( -\frac{732672}{325} a - \frac{3306304}{325} \) \( \bigl[i + 1\) , \( i - 1\) , \( i\) , \( -i - 1\) , \( -i + 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-i-1\right){x}-i+1$
65.3-a4 65.3-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $0.850436644$ 0.425218322 \( -\frac{1110974116587520512}{49591064453125} a - \frac{489671365797093184}{49591064453125} \) \( \bigl[i + 1\) , \( i - 1\) , \( i\) , \( 59 i + 99\) , \( 372 i - 410\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(59i+99\right){x}+372i-410$
65.3-a5 65.3-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $7.653929802$ 0.425218322 \( \frac{1183232}{845} a - \frac{851776}{845} \) \( \bigl[i + 1\) , \( -i\) , \( i\) , \( 1\) , \( 0\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+{x}$
65.3-a6 65.3-a \(\Q(\sqrt{-1}) \) \( 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $2.551309934$ 0.425218322 \( -\frac{356394317312}{603351125} a + \frac{580261889216}{603351125} \) \( \bigl[i + 1\) , \( -i\) , \( i\) , \( -5 i - 4\) , \( 2 i + 5\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(-5i-4\right){x}+2i+5$
72.1-a1 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) $0$ $\Z/8\Z$ $1$ $1.817673508$ 0.454418377 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i - 4\) , \( 22 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-4\right){x}+22i$
72.1-a2 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) $0$ $\Z/8\Z$ $1$ $7.270694035$ 0.454418377 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+{x}$
72.1-a3 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $7.270694035$ 0.454418377 \( \frac{35152}{9} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 1\) , \( -i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+1\right){x}-i$
72.1-a4 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $3.635347017$ 0.454418377 \( \frac{1556068}{81} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 6\) , \( -5 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+6\right){x}-5i$
72.1-a5 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) $0$ $\Z/4\Z$ $1$ $3.635347017$ 0.454418377 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 16\) , \( -28 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+16\right){x}-28i$
72.1-a6 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) $0$ $\Z/4\Z$ $1$ $1.817673508$ 0.454418377 \( \frac{3065617154}{9} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 96\) , \( -347 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+96\right){x}-347i$
98.1-a1 98.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.875417135$ 0.437708567 \( -\frac{548347731625}{1835008} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -170\) , \( 874\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-170{x}+874$
98.1-a2 98.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $7.878754216$ 0.437708567 \( -\frac{15625}{28} \) \( \bigl[i\) , \( 0\) , \( i\) , \( 0\) , \( 0\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}$
98.1-a3 98.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $2.626251405$ 0.437708567 \( \frac{9938375}{21952} \) \( \bigl[i\) , \( 0\) , \( i\) , \( 5\) , \( 6\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+5{x}+6$
98.1-a4 98.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $1.313125702$ 0.437708567 \( \frac{4956477625}{941192} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -35\) , \( 70\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-35{x}+70$
98.1-a5 98.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $3.939377108$ 0.437708567 \( \frac{128787625}{98} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -10\) , \( -12\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-10{x}-12$
98.1-a6 98.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.437708567$ 0.437708567 \( \frac{2251439055699625}{25088} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -2730\) , \( 55146\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-2730{x}+55146$
100.2-a1 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/6\Z$ $1$ $3.211547828$ 0.535257971 \( -\frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( 4 i - 11\) , \( 11 i - 12\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(4i-11\right){x}+11i-12$
100.2-a2 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/6\Z$ $1$ $3.211547828$ 0.535257971 \( \frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -6 i - 11\) , \( -12 i - 12\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-6i-11\right){x}-12i-12$
100.2-a3 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $1.070515942$ 0.535257971 \( -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( 54 i - 1\) , \( -119 i - 118\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(54i-1\right){x}-119i-118$
100.2-a4 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $1.070515942$ 0.535257971 \( \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -56 i - 1\) , \( 118 i - 118\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-56i-1\right){x}+118i-118$
100.2-a5 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $2.141031885$ 0.535257971 \( -\frac{20720464}{15625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 9\) , \( 17 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+9\right){x}+17i$
100.2-a6 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $6.423095656$ 0.535257971 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i - 1\) , \( -i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}-i$
100.2-a7 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/6\Z$ $1$ $6.423095656$ 0.535257971 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
100.2-a8 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $2.141031885$ 0.535257971 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
106.1-a1 106.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 53 \) $0$ $\Z/9\Z$ $1$ $5.985343332$ 0.665038148 \( -\frac{24565}{1696} a + \frac{44217}{1696} \) \( \bigl[1\) , \( i - 1\) , \( i + 1\) , \( -i - 1\) , \( 0\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-i-1\right){x}$
106.1-a2 106.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $0.665038148$ 0.665038148 \( \frac{2664717683643388715}{6599527183604266} a + \frac{2995316993300077017}{6599527183604266} \) \( \bigl[1\) , \( i - 1\) , \( i + 1\) , \( -76 i + 14\) , \( 225 i + 345\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-76i+14\right){x}+225i+345$
106.1-a3 106.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $1.995114444$ 0.665038148 \( \frac{12075196954415}{595508} a + \frac{199712312811}{595508} \) \( \bigl[1\) , \( i - 1\) , \( i + 1\) , \( -51 i - 31\) , \( 174 i + 30\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-51i-31\right){x}+174i+30$
106.2-a1 106.2-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 53 \) $0$ $\Z/9\Z$ $1$ $5.985343332$ 0.665038148 \( \frac{24565}{1696} a + \frac{44217}{1696} \) \( \bigl[1\) , \( -i - 1\) , \( i + 1\) , \( -1\) , \( -i\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}-{x}-i$
106.2-a2 106.2-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $0.665038148$ 0.665038148 \( -\frac{2664717683643388715}{6599527183604266} a + \frac{2995316993300077017}{6599527183604266} \) \( \bigl[1\) , \( -i - 1\) , \( i + 1\) , \( 75 i + 14\) , \( -226 i + 345\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(75i+14\right){x}-226i+345$
106.2-a3 106.2-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $1.995114444$ 0.665038148 \( -\frac{12075196954415}{595508} a + \frac{199712312811}{595508} \) \( \bigl[1\) , \( -i - 1\) , \( i + 1\) , \( 50 i - 31\) , \( -175 i + 30\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(50i-31\right){x}-175i+30$
121.1-a1 121.1-a \(\Q(\sqrt{-1}) \) \( 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $0.370308724$ 0.370308724 \( -\frac{52893159101157376}{11} \) \( \bigl[0\) , \( 1\) , \( i\) , \( -7820\) , \( 263580\bigr] \) ${y}^2+i{y}={x}^{3}+{x}^{2}-7820{x}+263580$
121.1-a2 121.1-a \(\Q(\sqrt{-1}) \) \( 11^{2} \) $0$ $\Z/5\Z$ $1$ $1.851543623$ 0.370308724 \( -\frac{122023936}{161051} \) \( \bigl[0\) , \( 1\) , \( i\) , \( -10\) , \( 20\bigr] \) ${y}^2+i{y}={x}^{3}+{x}^{2}-10{x}+20$
121.1-a3 121.1-a \(\Q(\sqrt{-1}) \) \( 11^{2} \) $0$ $\Z/5\Z$ $1$ $9.257718117$ 0.370308724 \( -\frac{4096}{11} \) \( \bigl[0\) , \( 1\) , \( i\) , \( 0\) , \( 0\bigr] \) ${y}^2+i{y}={x}^{3}+{x}^{2}$
130.1-a1 130.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $0.960726389$ 0.480363194 \( \frac{276861163011391}{13000000000} a - \frac{33515586556057}{812500000} \) \( \bigl[i\) , \( -i + 1\) , \( i\) , \( 89 i - 50\) , \( -368 i + 14\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(89i-50\right){x}-368i+14$
130.1-a2 130.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $2.882179168$ 0.480363194 \( -\frac{37525044319}{2197000} a - \frac{7169596274}{274625} \) \( \bigl[i\) , \( -i + 1\) , \( i\) , \( 9 i + 5\) , \( 2 i + 18\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(9i+5\right){x}+2i+18$
130.1-a3 130.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $1.441089584$ 0.480363194 \( -\frac{133816114442969}{301675562500} a - \frac{19082395919017}{301675562500} \) \( \bigl[i\) , \( -i + 1\) , \( i\) , \( -i + 15\) , \( 30 i + 30\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-i+15\right){x}+30i+30$
130.1-a4 130.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $0.480363194$ 0.480363194 \( \frac{8418015312387897223}{20629882812500000} a + \frac{2783266907131437289}{20629882812500000} \) \( \bigl[i\) , \( -i + 1\) , \( i\) , \( 9 i - 130\) , \( -688 i - 882\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(9i-130\right){x}-688i-882$
130.1-a5 130.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $8.646537506$ 0.480363194 \( -\frac{31409}{130} a + \frac{101344}{65} \) \( \bigl[i\) , \( -i + 1\) , \( i\) , \( -i\) , \( 0\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}-i{x}$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.