Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp: K = nfinit(Polrev([1, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,1]),K([3759,29802]),K([1705272,1091984])])
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([0,1]),Polrev([3759,29802]),Polrev([1705272,1091984])], K);
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,1],K![3759,29802],K![1705272,1091984]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((195i+195)\) | = | \((i+1)\cdot(-i-2)\cdot(2i+1)\cdot(3)\cdot(-3i-2)\cdot(2i+3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 76050 \) | = | \(2\cdot5\cdot5\cdot9\cdot13\cdot13\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((8317774149750i-105356788026750)\) | = | \((i+1)^{3}\cdot(-i-2)^{24}\cdot(2i+1)^{3}\cdot(3)^{4}\cdot(-3i-2)^{3}\cdot(2i+3)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 11169238150119781494140625000 \) | = | \(2^{3}\cdot5^{24}\cdot5^{3}\cdot9^{4}\cdot13^{3}\cdot13\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{383496341948920335819376969}{14142751693725585937500} i - \frac{352885130319133178679105551}{42428255081176757812500} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(74 i - \frac{321}{4} : -\frac{75}{2} i + \frac{321}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 0.053621310989078661648377115071479563966 \) | ||
Tamagawa product: | \( 24 \) = \(1\cdot2\cdot1\cdot2^{2}\cdot3\cdot1\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.2869114637378878795610507617155095352 \) | ||
Analytic order of Ш: | \( 4 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((i+1)\) | \(2\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
\((-i-2)\) | \(5\) | \(2\) | \(I_{24}\) | Non-split multiplicative | \(1\) | \(1\) | \(24\) | \(24\) |
\((2i+1)\) | \(5\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
\((3)\) | \(9\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
\((-3i-2)\) | \(13\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
\((2i+3)\) | \(13\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
76050.5-c
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.