# Properties

 Label 2.0.4.1-76050.5-c2 Base field $$\Q(\sqrt{-1})$$ Conductor norm $$76050$$ CM no Base change no Q-curve no Torsion order $$2$$ Rank $$0$$

# Related objects

Show commands: Magma / PariGP / SageMath

## Base field$$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^{2} + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))

gp: K = nfinit(Polrev([1, 0, 1]));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);

## Weierstrass equation

$${y}^2+i{x}{y}+{y}={x}^{3}+\left(52422i-35581\right){x}+6098960i-666080$$
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([1,0]),K([-35581,52422]),K([-666080,6098960])])

gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([1,0]),Polrev([-35581,52422]),Polrev([-666080,6098960])], K);

magma: E := EllipticCurve([K![0,1],K![0,0],K![1,0],K![-35581,52422],K![-666080,6098960]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(195i+195)$$ = $$(i+1)\cdot(-i-2)\cdot(2i+1)\cdot(3)\cdot(-3i-2)\cdot(2i+3)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$76050$$ = $$2\cdot5\cdot5\cdot9\cdot13\cdot13$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(5572543850250i+7907020026750)$$ = $$(i+1)^{3}\cdot(-i-2)^{6}\cdot(2i+1)^{3}\cdot(3)\cdot(-3i-2)^{12}\cdot(2i+3)^{4}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$93574210666384665140625000$$ = $$2^{3}\cdot5^{6}\cdot5^{3}\cdot9\cdot13^{12}\cdot13^{4}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{4896705128958698767967797}{4368390960465187500} i - \frac{3906540643430954043015893}{1456130320155062500}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: $$\Z/2\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generator: $\left(70 i - \frac{511}{4} : \frac{511}{8} i + \frac{69}{2} : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$0.053621310989078661648377115071479563966$$ Tamagawa product: $$96$$  =  $$1\cdot2\cdot1\cdot1\cdot( 2^{2} \cdot 3 )\cdot2^{2}$$ Torsion order: $$2$$ Leading coefficient: $$1.2869114637378878795610507617155095352$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(i+1)$$ $$2$$ $$1$$ $$I_{3}$$ Non-split multiplicative $$1$$ $$1$$ $$3$$ $$3$$
$$(-i-2)$$ $$5$$ $$2$$ $$I_{6}$$ Non-split multiplicative $$1$$ $$1$$ $$6$$ $$6$$
$$(2i+1)$$ $$5$$ $$1$$ $$I_{3}$$ Non-split multiplicative $$1$$ $$1$$ $$3$$ $$3$$
$$(3)$$ $$9$$ $$1$$ $$I_{1}$$ Split multiplicative $$-1$$ $$1$$ $$1$$ $$1$$
$$(-3i-2)$$ $$13$$ $$12$$ $$I_{12}$$ Split multiplicative $$-1$$ $$1$$ $$12$$ $$12$$
$$(2i+3)$$ $$13$$ $$4$$ $$I_{4}$$ Split multiplicative $$-1$$ $$1$$ $$4$$ $$4$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B
$$3$$ 3B.1.2

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 76050.5-c consists of curves linked by isogenies of degrees dividing 12.

## Base change

This elliptic curve is not a $$\Q$$-curve.

It is not the base change of an elliptic curve defined over any subfield.