Properties

Label 8732.861
Modulus $8732$
Conductor $2183$
Order $87$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(174)) M = H._module chi = DirichletCharacter(H, M([0,116,72]))
 
Copy content pari:[g,chi] = znchar(Mod(861,8732))
 

Basic properties

Modulus: \(8732\)
Conductor: \(2183\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(87\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2183}(861,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8732.bs

\(\chi_{8732}(121,\cdot)\) \(\chi_{8732}(137,\cdot)\) \(\chi_{8732}(285,\cdot)\) \(\chi_{8732}(417,\cdot)\) \(\chi_{8732}(433,\cdot)\) \(\chi_{8732}(713,\cdot)\) \(\chi_{8732}(729,\cdot)\) \(\chi_{8732}(861,\cdot)\) \(\chi_{8732}(877,\cdot)\) \(\chi_{8732}(1025,\cdot)\) \(\chi_{8732}(1157,\cdot)\) \(\chi_{8732}(1305,\cdot)\) \(\chi_{8732}(1469,\cdot)\) \(\chi_{8732}(1897,\cdot)\) \(\chi_{8732}(1913,\cdot)\) \(\chi_{8732}(2209,\cdot)\) \(\chi_{8732}(2505,\cdot)\) \(\chi_{8732}(2637,\cdot)\) \(\chi_{8732}(2653,\cdot)\) \(\chi_{8732}(2785,\cdot)\) \(\chi_{8732}(2801,\cdot)\) \(\chi_{8732}(3097,\cdot)\) \(\chi_{8732}(3673,\cdot)\) \(\chi_{8732}(3821,\cdot)\) \(\chi_{8732}(3969,\cdot)\) \(\chi_{8732}(4117,\cdot)\) \(\chi_{8732}(4133,\cdot)\) \(\chi_{8732}(4265,\cdot)\) \(\chi_{8732}(4429,\cdot)\) \(\chi_{8732}(4709,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{87})$
Fixed field: Number field defined by a degree 87 polynomial

Values on generators

\((4367,1889,297)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{12}{29}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 8732 }(861, a) \) \(1\)\(1\)\(e\left(\frac{2}{87}\right)\)\(e\left(\frac{71}{87}\right)\)\(e\left(\frac{68}{87}\right)\)\(e\left(\frac{4}{87}\right)\)\(e\left(\frac{10}{29}\right)\)\(e\left(\frac{83}{87}\right)\)\(e\left(\frac{73}{87}\right)\)\(e\left(\frac{19}{87}\right)\)\(e\left(\frac{5}{87}\right)\)\(e\left(\frac{70}{87}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8732 }(861,a) \;\) at \(\;a = \) e.g. 2