sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(174))
M = H._module
chi = DirichletCharacter(H, M([116,72]))
pari:[g,chi] = znchar(Mod(861,2183))
Modulus: | \(2183\) | |
Conductor: | \(2183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(87\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2183}(26,\cdot)\)
\(\chi_{2183}(63,\cdot)\)
\(\chi_{2183}(84,\cdot)\)
\(\chi_{2183}(100,\cdot)\)
\(\chi_{2183}(121,\cdot)\)
\(\chi_{2183}(137,\cdot)\)
\(\chi_{2183}(248,\cdot)\)
\(\chi_{2183}(285,\cdot)\)
\(\chi_{2183}(322,\cdot)\)
\(\chi_{2183}(343,\cdot)\)
\(\chi_{2183}(359,\cdot)\)
\(\chi_{2183}(380,\cdot)\)
\(\chi_{2183}(417,\cdot)\)
\(\chi_{2183}(433,\cdot)\)
\(\chi_{2183}(454,\cdot)\)
\(\chi_{2183}(470,\cdot)\)
\(\chi_{2183}(491,\cdot)\)
\(\chi_{2183}(507,\cdot)\)
\(\chi_{2183}(602,\cdot)\)
\(\chi_{2183}(618,\cdot)\)
\(\chi_{2183}(639,\cdot)\)
\(\chi_{2183}(676,\cdot)\)
\(\chi_{2183}(713,\cdot)\)
\(\chi_{2183}(729,\cdot)\)
\(\chi_{2183}(787,\cdot)\)
\(\chi_{2183}(803,\cdot)\)
\(\chi_{2183}(824,\cdot)\)
\(\chi_{2183}(861,\cdot)\)
\(\chi_{2183}(877,\cdot)\)
\(\chi_{2183}(914,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1889,297)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{12}{29}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 2183 }(861, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{87}\right)\) | \(e\left(\frac{2}{87}\right)\) | \(e\left(\frac{14}{87}\right)\) | \(e\left(\frac{71}{87}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(e\left(\frac{68}{87}\right)\) | \(e\left(\frac{7}{29}\right)\) | \(e\left(\frac{4}{87}\right)\) | \(e\left(\frac{26}{29}\right)\) | \(e\left(\frac{10}{29}\right)\) |
sage:chi.jacobi_sum(n)