sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8732, base_ring=CyclotomicField(174))
M = H._module
chi = DirichletCharacter(H, M([0,116,42]))
pari:[g,chi] = znchar(Mod(2637,8732))
\(\chi_{8732}(121,\cdot)\)
\(\chi_{8732}(137,\cdot)\)
\(\chi_{8732}(285,\cdot)\)
\(\chi_{8732}(417,\cdot)\)
\(\chi_{8732}(433,\cdot)\)
\(\chi_{8732}(713,\cdot)\)
\(\chi_{8732}(729,\cdot)\)
\(\chi_{8732}(861,\cdot)\)
\(\chi_{8732}(877,\cdot)\)
\(\chi_{8732}(1025,\cdot)\)
\(\chi_{8732}(1157,\cdot)\)
\(\chi_{8732}(1305,\cdot)\)
\(\chi_{8732}(1469,\cdot)\)
\(\chi_{8732}(1897,\cdot)\)
\(\chi_{8732}(1913,\cdot)\)
\(\chi_{8732}(2209,\cdot)\)
\(\chi_{8732}(2505,\cdot)\)
\(\chi_{8732}(2637,\cdot)\)
\(\chi_{8732}(2653,\cdot)\)
\(\chi_{8732}(2785,\cdot)\)
\(\chi_{8732}(2801,\cdot)\)
\(\chi_{8732}(3097,\cdot)\)
\(\chi_{8732}(3673,\cdot)\)
\(\chi_{8732}(3821,\cdot)\)
\(\chi_{8732}(3969,\cdot)\)
\(\chi_{8732}(4117,\cdot)\)
\(\chi_{8732}(4133,\cdot)\)
\(\chi_{8732}(4265,\cdot)\)
\(\chi_{8732}(4429,\cdot)\)
\(\chi_{8732}(4709,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4367,1889,297)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{7}{29}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 8732 }(2637, a) \) |
\(1\) | \(1\) | \(e\left(\frac{35}{87}\right)\) | \(e\left(\frac{68}{87}\right)\) | \(e\left(\frac{59}{87}\right)\) | \(e\left(\frac{70}{87}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{17}{87}\right)\) | \(e\left(\frac{16}{87}\right)\) | \(e\left(\frac{28}{87}\right)\) | \(e\left(\frac{44}{87}\right)\) | \(e\left(\frac{7}{87}\right)\) |
sage:chi.jacobi_sum(n)