Properties

Label 8732.bs
Modulus $8732$
Conductor $2183$
Order $87$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(174)) M = H._module chi = DirichletCharacter(H, M([0,116,150])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(121,8732)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8732\)
Conductor: \(2183\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(87\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2183.w
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{87})$
Fixed field: Number field defined by a degree 87 polynomial

First 31 of 56 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{8732}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{87}\right)\) \(e\left(\frac{44}{87}\right)\) \(e\left(\frac{74}{87}\right)\) \(e\left(\frac{76}{87}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{11}{87}\right)\) \(e\left(\frac{82}{87}\right)\) \(e\left(\frac{13}{87}\right)\) \(e\left(\frac{8}{87}\right)\) \(e\left(\frac{25}{87}\right)\)
\(\chi_{8732}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{87}\right)\) \(e\left(\frac{52}{87}\right)\) \(e\left(\frac{40}{87}\right)\) \(e\left(\frac{74}{87}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{13}{87}\right)\) \(e\left(\frac{2}{87}\right)\) \(e\left(\frac{47}{87}\right)\) \(e\left(\frac{49}{87}\right)\) \(e\left(\frac{77}{87}\right)\)
\(\chi_{8732}(285,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{87}\right)\) \(e\left(\frac{34}{87}\right)\) \(e\left(\frac{73}{87}\right)\) \(e\left(\frac{35}{87}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{52}{87}\right)\) \(e\left(\frac{8}{87}\right)\) \(e\left(\frac{14}{87}\right)\) \(e\left(\frac{22}{87}\right)\) \(e\left(\frac{47}{87}\right)\)
\(\chi_{8732}(417,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{87}\right)\) \(e\left(\frac{47}{87}\right)\) \(e\left(\frac{83}{87}\right)\) \(e\left(\frac{10}{87}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{77}{87}\right)\) \(e\left(\frac{52}{87}\right)\) \(e\left(\frac{4}{87}\right)\) \(e\left(\frac{56}{87}\right)\) \(e\left(\frac{1}{87}\right)\)
\(\chi_{8732}(433,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{87}\right)\) \(e\left(\frac{43}{87}\right)\) \(e\left(\frac{13}{87}\right)\) \(e\left(\frac{11}{87}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{76}{87}\right)\) \(e\left(\frac{5}{87}\right)\) \(e\left(\frac{74}{87}\right)\) \(e\left(\frac{79}{87}\right)\) \(e\left(\frac{62}{87}\right)\)
\(\chi_{8732}(713,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{87}\right)\) \(e\left(\frac{83}{87}\right)\) \(e\left(\frac{17}{87}\right)\) \(e\left(\frac{1}{87}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{86}{87}\right)\) \(e\left(\frac{40}{87}\right)\) \(e\left(\frac{70}{87}\right)\) \(e\left(\frac{23}{87}\right)\) \(e\left(\frac{61}{87}\right)\)
\(\chi_{8732}(729,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{87}\right)\) \(e\left(\frac{61}{87}\right)\) \(e\left(\frac{67}{87}\right)\) \(e\left(\frac{50}{87}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{37}{87}\right)\) \(e\left(\frac{86}{87}\right)\) \(e\left(\frac{20}{87}\right)\) \(e\left(\frac{19}{87}\right)\) \(e\left(\frac{5}{87}\right)\)
\(\chi_{8732}(861,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{87}\right)\) \(e\left(\frac{71}{87}\right)\) \(e\left(\frac{68}{87}\right)\) \(e\left(\frac{4}{87}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{83}{87}\right)\) \(e\left(\frac{73}{87}\right)\) \(e\left(\frac{19}{87}\right)\) \(e\left(\frac{5}{87}\right)\) \(e\left(\frac{70}{87}\right)\)
\(\chi_{8732}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{87}\right)\) \(e\left(\frac{85}{87}\right)\) \(e\left(\frac{52}{87}\right)\) \(e\left(\frac{44}{87}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{43}{87}\right)\) \(e\left(\frac{20}{87}\right)\) \(e\left(\frac{35}{87}\right)\) \(e\left(\frac{55}{87}\right)\) \(e\left(\frac{74}{87}\right)\)
\(\chi_{8732}(1025,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{87}\right)\) \(e\left(\frac{31}{87}\right)\) \(e\left(\frac{64}{87}\right)\) \(e\left(\frac{14}{87}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{73}{87}\right)\) \(e\left(\frac{38}{87}\right)\) \(e\left(\frac{23}{87}\right)\) \(e\left(\frac{61}{87}\right)\) \(e\left(\frac{71}{87}\right)\)
\(\chi_{8732}(1157,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{87}\right)\) \(e\left(\frac{77}{87}\right)\) \(e\left(\frac{86}{87}\right)\) \(e\left(\frac{46}{87}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{41}{87}\right)\) \(e\left(\frac{13}{87}\right)\) \(e\left(\frac{1}{87}\right)\) \(e\left(\frac{14}{87}\right)\) \(e\left(\frac{22}{87}\right)\)
\(\chi_{8732}(1305,\cdot)\) \(1\) \(1\) \(e\left(\frac{74}{87}\right)\) \(e\left(\frac{17}{87}\right)\) \(e\left(\frac{80}{87}\right)\) \(e\left(\frac{61}{87}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{26}{87}\right)\) \(e\left(\frac{4}{87}\right)\) \(e\left(\frac{7}{87}\right)\) \(e\left(\frac{11}{87}\right)\) \(e\left(\frac{67}{87}\right)\)
\(\chi_{8732}(1469,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{87}\right)\) \(e\left(\frac{82}{87}\right)\) \(e\left(\frac{43}{87}\right)\) \(e\left(\frac{23}{87}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{64}{87}\right)\) \(e\left(\frac{50}{87}\right)\) \(e\left(\frac{44}{87}\right)\) \(e\left(\frac{7}{87}\right)\) \(e\left(\frac{11}{87}\right)\)
\(\chi_{8732}(1897,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{87}\right)\) \(e\left(\frac{59}{87}\right)\) \(e\left(\frac{32}{87}\right)\) \(e\left(\frac{7}{87}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{80}{87}\right)\) \(e\left(\frac{19}{87}\right)\) \(e\left(\frac{55}{87}\right)\) \(e\left(\frac{74}{87}\right)\) \(e\left(\frac{79}{87}\right)\)
\(\chi_{8732}(1913,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{87}\right)\) \(e\left(\frac{79}{87}\right)\) \(e\left(\frac{34}{87}\right)\) \(e\left(\frac{2}{87}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{85}{87}\right)\) \(e\left(\frac{80}{87}\right)\) \(e\left(\frac{53}{87}\right)\) \(e\left(\frac{46}{87}\right)\) \(e\left(\frac{35}{87}\right)\)
\(\chi_{8732}(2209,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{87}\right)\) \(e\left(\frac{37}{87}\right)\) \(e\left(\frac{82}{87}\right)\) \(e\left(\frac{56}{87}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{31}{87}\right)\) \(e\left(\frac{65}{87}\right)\) \(e\left(\frac{5}{87}\right)\) \(e\left(\frac{70}{87}\right)\) \(e\left(\frac{23}{87}\right)\)
\(\chi_{8732}(2505,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{87}\right)\) \(e\left(\frac{16}{87}\right)\) \(e\left(\frac{19}{87}\right)\) \(e\left(\frac{83}{87}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{4}{87}\right)\) \(e\left(\frac{14}{87}\right)\) \(e\left(\frac{68}{87}\right)\) \(e\left(\frac{82}{87}\right)\) \(e\left(\frac{17}{87}\right)\)
\(\chi_{8732}(2637,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{87}\right)\) \(e\left(\frac{68}{87}\right)\) \(e\left(\frac{59}{87}\right)\) \(e\left(\frac{70}{87}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{17}{87}\right)\) \(e\left(\frac{16}{87}\right)\) \(e\left(\frac{28}{87}\right)\) \(e\left(\frac{44}{87}\right)\) \(e\left(\frac{7}{87}\right)\)
\(\chi_{8732}(2653,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{87}\right)\) \(e\left(\frac{67}{87}\right)\) \(e\left(\frac{85}{87}\right)\) \(e\left(\frac{5}{87}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{82}{87}\right)\) \(e\left(\frac{26}{87}\right)\) \(e\left(\frac{2}{87}\right)\) \(e\left(\frac{28}{87}\right)\) \(e\left(\frac{44}{87}\right)\)
\(\chi_{8732}(2785,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{87}\right)\) \(e\left(\frac{62}{87}\right)\) \(e\left(\frac{41}{87}\right)\) \(e\left(\frac{28}{87}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{59}{87}\right)\) \(e\left(\frac{76}{87}\right)\) \(e\left(\frac{46}{87}\right)\) \(e\left(\frac{35}{87}\right)\) \(e\left(\frac{55}{87}\right)\)
\(\chi_{8732}(2801,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{87}\right)\) \(e\left(\frac{64}{87}\right)\) \(e\left(\frac{76}{87}\right)\) \(e\left(\frac{71}{87}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{16}{87}\right)\) \(e\left(\frac{56}{87}\right)\) \(e\left(\frac{11}{87}\right)\) \(e\left(\frac{67}{87}\right)\) \(e\left(\frac{68}{87}\right)\)
\(\chi_{8732}(3097,\cdot)\) \(1\) \(1\) \(e\left(\frac{70}{87}\right)\) \(e\left(\frac{49}{87}\right)\) \(e\left(\frac{31}{87}\right)\) \(e\left(\frac{53}{87}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{34}{87}\right)\) \(e\left(\frac{32}{87}\right)\) \(e\left(\frac{56}{87}\right)\) \(e\left(\frac{1}{87}\right)\) \(e\left(\frac{14}{87}\right)\)
\(\chi_{8732}(3673,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{87}\right)\) \(e\left(\frac{11}{87}\right)\) \(e\left(\frac{62}{87}\right)\) \(e\left(\frac{19}{87}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{68}{87}\right)\) \(e\left(\frac{64}{87}\right)\) \(e\left(\frac{25}{87}\right)\) \(e\left(\frac{2}{87}\right)\) \(e\left(\frac{28}{87}\right)\)
\(\chi_{8732}(3821,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{87}\right)\) \(e\left(\frac{26}{87}\right)\) \(e\left(\frac{20}{87}\right)\) \(e\left(\frac{37}{87}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{50}{87}\right)\) \(e\left(\frac{1}{87}\right)\) \(e\left(\frac{67}{87}\right)\) \(e\left(\frac{68}{87}\right)\) \(e\left(\frac{82}{87}\right)\)
\(\chi_{8732}(3969,\cdot)\) \(1\) \(1\) \(e\left(\frac{68}{87}\right)\) \(e\left(\frac{65}{87}\right)\) \(e\left(\frac{50}{87}\right)\) \(e\left(\frac{49}{87}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{38}{87}\right)\) \(e\left(\frac{46}{87}\right)\) \(e\left(\frac{37}{87}\right)\) \(e\left(\frac{83}{87}\right)\) \(e\left(\frac{31}{87}\right)\)
\(\chi_{8732}(4117,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{87}\right)\) \(e\left(\frac{86}{87}\right)\) \(e\left(\frac{26}{87}\right)\) \(e\left(\frac{22}{87}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{65}{87}\right)\) \(e\left(\frac{10}{87}\right)\) \(e\left(\frac{61}{87}\right)\) \(e\left(\frac{71}{87}\right)\) \(e\left(\frac{37}{87}\right)\)
\(\chi_{8732}(4133,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{87}\right)\) \(e\left(\frac{73}{87}\right)\) \(e\left(\frac{16}{87}\right)\) \(e\left(\frac{47}{87}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{40}{87}\right)\) \(e\left(\frac{53}{87}\right)\) \(e\left(\frac{71}{87}\right)\) \(e\left(\frac{37}{87}\right)\) \(e\left(\frac{83}{87}\right)\)
\(\chi_{8732}(4265,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{87}\right)\) \(e\left(\frac{41}{87}\right)\) \(e\left(\frac{65}{87}\right)\) \(e\left(\frac{55}{87}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{32}{87}\right)\) \(e\left(\frac{25}{87}\right)\) \(e\left(\frac{22}{87}\right)\) \(e\left(\frac{47}{87}\right)\) \(e\left(\frac{49}{87}\right)\)
\(\chi_{8732}(4429,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{87}\right)\) \(e\left(\frac{76}{87}\right)\) \(e\left(\frac{25}{87}\right)\) \(e\left(\frac{68}{87}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{19}{87}\right)\) \(e\left(\frac{23}{87}\right)\) \(e\left(\frac{62}{87}\right)\) \(e\left(\frac{85}{87}\right)\) \(e\left(\frac{59}{87}\right)\)
\(\chi_{8732}(4709,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{87}\right)\) \(e\left(\frac{80}{87}\right)\) \(e\left(\frac{8}{87}\right)\) \(e\left(\frac{67}{87}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{20}{87}\right)\) \(e\left(\frac{70}{87}\right)\) \(e\left(\frac{79}{87}\right)\) \(e\left(\frac{62}{87}\right)\) \(e\left(\frac{85}{87}\right)\)
\(\chi_{8732}(4725,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{87}\right)\) \(e\left(\frac{25}{87}\right)\) \(e\left(\frac{46}{87}\right)\) \(e\left(\frac{59}{87}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{28}{87}\right)\) \(e\left(\frac{11}{87}\right)\) \(e\left(\frac{41}{87}\right)\) \(e\left(\frac{52}{87}\right)\) \(e\left(\frac{32}{87}\right)\)