Properties

Label 1740.599
Modulus $1740$
Conductor $1740$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1740, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([14,14,14,9]))
 
Copy content pari:[g,chi] = znchar(Mod(599,1740))
 

Basic properties

Modulus: \(1740\)
Conductor: \(1740\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1740.cf

\(\chi_{1740}(119,\cdot)\) \(\chi_{1740}(359,\cdot)\) \(\chi_{1740}(479,\cdot)\) \(\chi_{1740}(599,\cdot)\) \(\chi_{1740}(659,\cdot)\) \(\chi_{1740}(839,\cdot)\) \(\chi_{1740}(959,\cdot)\) \(\chi_{1740}(1139,\cdot)\) \(\chi_{1740}(1199,\cdot)\) \(\chi_{1740}(1319,\cdot)\) \(\chi_{1740}(1439,\cdot)\) \(\chi_{1740}(1679,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((871,581,697,901)\) → \((-1,-1,-1,e\left(\frac{9}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1740 }(599, a) \) \(-1\)\(1\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{2}{7}\right)\)\(-i\)\(e\left(\frac{11}{28}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{13}{28}\right)\)\(-i\)\(e\left(\frac{5}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1740 }(599,a) \;\) at \(\;a = \) e.g. 2