L(s) = 1 | + (0.623 − 0.781i)7-s + (0.974 + 0.222i)11-s + (−0.222 + 0.974i)13-s − i·17-s + (−0.781 + 0.623i)19-s + (0.900 − 0.433i)23-s + (0.433 − 0.900i)31-s + (−0.974 + 0.222i)37-s − i·41-s + (0.433 + 0.900i)43-s + (0.974 + 0.222i)47-s + (−0.222 − 0.974i)49-s + (−0.900 − 0.433i)53-s + 59-s + (−0.781 − 0.623i)61-s + ⋯ |
L(s) = 1 | + (0.623 − 0.781i)7-s + (0.974 + 0.222i)11-s + (−0.222 + 0.974i)13-s − i·17-s + (−0.781 + 0.623i)19-s + (0.900 − 0.433i)23-s + (0.433 − 0.900i)31-s + (−0.974 + 0.222i)37-s − i·41-s + (0.433 + 0.900i)43-s + (0.974 + 0.222i)47-s + (−0.222 − 0.974i)49-s + (−0.900 − 0.433i)53-s + 59-s + (−0.781 − 0.623i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.514 - 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.514 - 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.134963396 - 1.208695548i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.134963396 - 1.208695548i\) |
\(L(1)\) |
\(\approx\) |
\(1.217352414 - 0.1624678071i\) |
\(L(1)\) |
\(\approx\) |
\(1.217352414 - 0.1624678071i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 \) |
good | 7 | \( 1 + (0.623 - 0.781i)T \) |
| 11 | \( 1 + (0.974 + 0.222i)T \) |
| 13 | \( 1 + (-0.222 + 0.974i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (-0.781 + 0.623i)T \) |
| 23 | \( 1 + (0.900 - 0.433i)T \) |
| 31 | \( 1 + (0.433 - 0.900i)T \) |
| 37 | \( 1 + (-0.974 + 0.222i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + (0.433 + 0.900i)T \) |
| 47 | \( 1 + (0.974 + 0.222i)T \) |
| 53 | \( 1 + (-0.900 - 0.433i)T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + (-0.781 - 0.623i)T \) |
| 67 | \( 1 + (0.222 + 0.974i)T \) |
| 71 | \( 1 + (0.222 - 0.974i)T \) |
| 73 | \( 1 + (0.433 + 0.900i)T \) |
| 79 | \( 1 + (0.974 - 0.222i)T \) |
| 83 | \( 1 + (-0.623 - 0.781i)T \) |
| 89 | \( 1 + (0.433 - 0.900i)T \) |
| 97 | \( 1 + (0.781 - 0.623i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.14052434526934470064741282450, −19.37638868929812309507094118791, −18.918498587510935169049461624971, −17.745024199377033066579140692504, −17.44466366880883583565161405141, −16.67099068768853063670949157214, −15.43766677604021841674053504987, −15.17014474555029531196944661565, −14.38224579705892025620508122531, −13.52442049907425800523050894447, −12.54595896844881794600519076556, −12.12020813019716499711822765557, −11.07024887839879926351019791264, −10.61736482104662388245333265035, −9.46594979945338620341906317183, −8.716075771153795769008891857470, −8.20610119595658579197428977099, −7.13993362317173801959319339561, −6.28691801652361959942230795127, −5.483558467355182213187736741557, −4.718785163368031783896944640761, −3.70844753434555227779736035753, −2.79386108195862357373177488210, −1.80929726056990111428100229940, −0.89264114869670774951891695965,
0.52507922696668307500166889697, 1.492968218665016523512678060139, 2.350682127698635437887802073204, 3.63662029653142402197719133070, 4.36204854265912151172634397180, 4.98392047242318554354136445711, 6.244593044624028346058085298055, 6.94364179240390795717403048294, 7.59635999236704275326456051798, 8.62982588848774281562934466819, 9.31088630969180801767908528705, 10.14340668790070170205182528111, 11.03565842729613416181147515605, 11.64601976149415086986921679798, 12.38366680945909287404059819186, 13.36917701620022979435719113595, 14.26279758923850952603546636801, 14.45080411867090506119109217260, 15.5041555213976782018600752596, 16.47237405714274889481381015368, 17.079814592668064134003343829413, 17.5118777693936612326470782700, 18.67219785488973336694867135549, 19.14559214092778515734627266788, 20.02507071361899945303946478832