sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1740, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,14,14,1]))
pari:[g,chi] = znchar(Mod(959,1740))
Modulus: | \(1740\) | |
Conductor: | \(1740\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(28\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1740}(119,\cdot)\)
\(\chi_{1740}(359,\cdot)\)
\(\chi_{1740}(479,\cdot)\)
\(\chi_{1740}(599,\cdot)\)
\(\chi_{1740}(659,\cdot)\)
\(\chi_{1740}(839,\cdot)\)
\(\chi_{1740}(959,\cdot)\)
\(\chi_{1740}(1139,\cdot)\)
\(\chi_{1740}(1199,\cdot)\)
\(\chi_{1740}(1319,\cdot)\)
\(\chi_{1740}(1439,\cdot)\)
\(\chi_{1740}(1679,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((871,581,697,901)\) → \((-1,-1,-1,e\left(\frac{1}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 1740 }(959, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-i\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(-i\) | \(e\left(\frac{13}{28}\right)\) |
sage:chi.jacobi_sum(n)