Properties

Label 1710.667
Modulus $1710$
Conductor $95$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([0,9,2]))
 
Copy content pari:[g,chi] = znchar(Mod(667,1710))
 

Basic properties

Modulus: \(1710\)
Conductor: \(95\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{95}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1710.dl

\(\chi_{1710}(127,\cdot)\) \(\chi_{1710}(307,\cdot)\) \(\chi_{1710}(433,\cdot)\) \(\chi_{1710}(523,\cdot)\) \(\chi_{1710}(667,\cdot)\) \(\chi_{1710}(793,\cdot)\) \(\chi_{1710}(1117,\cdot)\) \(\chi_{1710}(1153,\cdot)\) \(\chi_{1710}(1207,\cdot)\) \(\chi_{1710}(1333,\cdot)\) \(\chi_{1710}(1477,\cdot)\) \(\chi_{1710}(1693,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: \(\Q(\zeta_{95})^+\)

Values on generators

\((191,1027,1351)\) → \((1,i,e\left(\frac{1}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1710 }(667, a) \) \(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(-i\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{23}{36}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1710 }(667,a) \;\) at \(\;a = \) e.g. 2