Properties

Modulus $1710$
Structure \(C_{2}\times C_{6}\times C_{36}\)
Order $432$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1710)
 
pari: g = idealstar(,1710,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 432
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{6}\times C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{1710}(191,\cdot)$, $\chi_{1710}(1027,\cdot)$, $\chi_{1710}(1351,\cdot)$

First 32 of 432 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{1710}(1,\cdot)\) 1710.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1710}(7,\cdot)\) 1710.ca 12 no \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(-i\)
\(\chi_{1710}(11,\cdot)\) 1710.z 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{1710}(13,\cdot)\) 1710.dk 36 no \(1\) \(1\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{1710}(17,\cdot)\) 1710.dn 36 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{1710}(23,\cdot)\) 1710.dm 36 no \(1\) \(1\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{1710}(29,\cdot)\) 1710.cv 18 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{1710}(31,\cdot)\) 1710.v 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{1710}(37,\cdot)\) 1710.p 4 no \(1\) \(1\) \(i\) \(1\) \(i\) \(i\) \(-i\) \(1\) \(-1\) \(-i\) \(-1\) \(-i\)
\(\chi_{1710}(41,\cdot)\) 1710.cp 18 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{1710}(43,\cdot)\) 1710.di 36 no \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{1710}(47,\cdot)\) 1710.dh 36 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\) \(i\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{1710}(49,\cdot)\) 1710.bd 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)
\(\chi_{1710}(53,\cdot)\) 1710.dp 36 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{1710}(59,\cdot)\) 1710.cv 18 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{1710}(61,\cdot)\) 1710.bt 9 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{1710}(67,\cdot)\) 1710.dk 36 no \(1\) \(1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{1710}(71,\cdot)\) 1710.ct 18 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{1710}(73,\cdot)\) 1710.dj 36 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{1710}(77,\cdot)\) 1710.ce 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1710}(79,\cdot)\) 1710.cm 18 no \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{1710}(83,\cdot)\) 1710.cf 12 no \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(i\)
\(\chi_{1710}(89,\cdot)\) 1710.da 18 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{1710}(91,\cdot)\) 1710.cr 18 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{1710}(97,\cdot)\) 1710.dk 36 no \(1\) \(1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{1710}(101,\cdot)\) 1710.cq 18 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{1710}(103,\cdot)\) 1710.bz 12 no \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(i\)
\(\chi_{1710}(107,\cdot)\) 1710.bw 12 no \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1710}(109,\cdot)\) 1710.cy 18 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{1710}(113,\cdot)\) 1710.ch 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1710}(119,\cdot)\) 1710.cn 18 no \(-1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{1710}(121,\cdot)\) 1710.i 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)
Click here to search among the remaining 400 characters.