sage: H = DirichletGroup(1710)
pari: g = idealstar(,1710,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 432 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{6}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1710}(191,\cdot)$, $\chi_{1710}(1027,\cdot)$, $\chi_{1710}(1351,\cdot)$ |
First 32 of 432 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1710}(1,\cdot)\) | 1710.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1710}(7,\cdot)\) | 1710.ca | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) |
\(\chi_{1710}(11,\cdot)\) | 1710.z | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1710}(13,\cdot)\) | 1710.dk | 36 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) |
\(\chi_{1710}(17,\cdot)\) | 1710.dn | 36 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) |
\(\chi_{1710}(23,\cdot)\) | 1710.dm | 36 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) |
\(\chi_{1710}(29,\cdot)\) | 1710.cv | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{1710}(31,\cdot)\) | 1710.v | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1710}(37,\cdot)\) | 1710.p | 4 | no | \(1\) | \(1\) | \(i\) | \(1\) | \(i\) | \(i\) | \(-i\) | \(1\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) |
\(\chi_{1710}(41,\cdot)\) | 1710.cp | 18 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{1710}(43,\cdot)\) | 1710.di | 36 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) |
\(\chi_{1710}(47,\cdot)\) | 1710.dh | 36 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(i\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) |
\(\chi_{1710}(49,\cdot)\) | 1710.bd | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{1710}(53,\cdot)\) | 1710.dp | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) |
\(\chi_{1710}(59,\cdot)\) | 1710.cv | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{1710}(61,\cdot)\) | 1710.bt | 9 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{1710}(67,\cdot)\) | 1710.dk | 36 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) |
\(\chi_{1710}(71,\cdot)\) | 1710.ct | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{1710}(73,\cdot)\) | 1710.dj | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) |
\(\chi_{1710}(77,\cdot)\) | 1710.ce | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1710}(79,\cdot)\) | 1710.cm | 18 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{1710}(83,\cdot)\) | 1710.cf | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(i\) |
\(\chi_{1710}(89,\cdot)\) | 1710.da | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{1710}(91,\cdot)\) | 1710.cr | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{1710}(97,\cdot)\) | 1710.dk | 36 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) |
\(\chi_{1710}(101,\cdot)\) | 1710.cq | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{1710}(103,\cdot)\) | 1710.bz | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(i\) |
\(\chi_{1710}(107,\cdot)\) | 1710.bw | 12 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1710}(109,\cdot)\) | 1710.cy | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{1710}(113,\cdot)\) | 1710.ch | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1710}(119,\cdot)\) | 1710.cn | 18 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{1710}(121,\cdot)\) | 1710.i | 3 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |