sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(143, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([42,35]))
pari:[g,chi] = znchar(Mod(128,143))
| Modulus: | \(143\) | |
| Conductor: | \(143\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{143}(2,\cdot)\)
\(\chi_{143}(6,\cdot)\)
\(\chi_{143}(7,\cdot)\)
\(\chi_{143}(19,\cdot)\)
\(\chi_{143}(24,\cdot)\)
\(\chi_{143}(28,\cdot)\)
\(\chi_{143}(41,\cdot)\)
\(\chi_{143}(46,\cdot)\)
\(\chi_{143}(50,\cdot)\)
\(\chi_{143}(63,\cdot)\)
\(\chi_{143}(72,\cdot)\)
\(\chi_{143}(84,\cdot)\)
\(\chi_{143}(85,\cdot)\)
\(\chi_{143}(106,\cdot)\)
\(\chi_{143}(123,\cdot)\)
\(\chi_{143}(128,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((79,67)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{7}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 143 }(128, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)