![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(143, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([18,35]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(143, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([18,35]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(63,143))
        pari:[g,chi] = znchar(Mod(63,143))
         
     
    
  
   | Modulus: | \(143\) |  | 
   | Conductor: | \(143\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(60\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{143}(2,\cdot)\)
  \(\chi_{143}(6,\cdot)\)
  \(\chi_{143}(7,\cdot)\)
  \(\chi_{143}(19,\cdot)\)
  \(\chi_{143}(24,\cdot)\)
  \(\chi_{143}(28,\cdot)\)
  \(\chi_{143}(41,\cdot)\)
  \(\chi_{143}(46,\cdot)\)
  \(\chi_{143}(50,\cdot)\)
  \(\chi_{143}(63,\cdot)\)
  \(\chi_{143}(72,\cdot)\)
  \(\chi_{143}(84,\cdot)\)
  \(\chi_{143}(85,\cdot)\)
  \(\chi_{143}(106,\cdot)\)
  \(\chi_{143}(123,\cdot)\)
  \(\chi_{143}(128,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((79,67)\) → \((e\left(\frac{3}{10}\right),e\left(\frac{7}{12}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) | 
    
    
      | \( \chi_{ 143 }(63, a) \) | \(1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)