sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1080, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,18,2,9]))
pari:[g,chi] = znchar(Mod(947,1080))
| Modulus: | \(1080\) | |
| Conductor: | \(1080\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1080}(83,\cdot)\)
\(\chi_{1080}(203,\cdot)\)
\(\chi_{1080}(227,\cdot)\)
\(\chi_{1080}(347,\cdot)\)
\(\chi_{1080}(443,\cdot)\)
\(\chi_{1080}(563,\cdot)\)
\(\chi_{1080}(587,\cdot)\)
\(\chi_{1080}(707,\cdot)\)
\(\chi_{1080}(803,\cdot)\)
\(\chi_{1080}(923,\cdot)\)
\(\chi_{1080}(947,\cdot)\)
\(\chi_{1080}(1067,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((271,541,1001,217)\) → \((-1,-1,e\left(\frac{1}{18}\right),i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1080 }(947, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) |
sage:chi.jacobi_sum(n)