| L(s) = 1 | + (−0.642 − 0.766i)7-s + (−0.173 − 0.984i)11-s + (−0.342 − 0.939i)13-s + (0.866 + 0.5i)17-s + (0.5 + 0.866i)19-s + (0.642 − 0.766i)23-s + (0.939 + 0.342i)29-s + (−0.766 − 0.642i)31-s + (0.866 + 0.5i)37-s + (0.939 − 0.342i)41-s + (0.984 − 0.173i)43-s + (0.642 + 0.766i)47-s + (−0.173 + 0.984i)49-s − i·53-s + (0.173 − 0.984i)59-s + ⋯ |
| L(s) = 1 | + (−0.642 − 0.766i)7-s + (−0.173 − 0.984i)11-s + (−0.342 − 0.939i)13-s + (0.866 + 0.5i)17-s + (0.5 + 0.866i)19-s + (0.642 − 0.766i)23-s + (0.939 + 0.342i)29-s + (−0.766 − 0.642i)31-s + (0.866 + 0.5i)37-s + (0.939 − 0.342i)41-s + (0.984 − 0.173i)43-s + (0.642 + 0.766i)47-s + (−0.173 + 0.984i)49-s − i·53-s + (0.173 − 0.984i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.524 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.524 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7857822453 - 1.406448804i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7857822453 - 1.406448804i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9753608850 - 0.2863128091i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9753608850 - 0.2863128091i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (-0.642 - 0.766i)T \) |
| 11 | \( 1 + (-0.173 - 0.984i)T \) |
| 13 | \( 1 + (-0.342 - 0.939i)T \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.642 - 0.766i)T \) |
| 29 | \( 1 + (0.939 + 0.342i)T \) |
| 31 | \( 1 + (-0.766 - 0.642i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.939 - 0.342i)T \) |
| 43 | \( 1 + (0.984 - 0.173i)T \) |
| 47 | \( 1 + (0.642 + 0.766i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.173 - 0.984i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.342 - 0.939i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (0.342 - 0.939i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.984 + 0.173i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.55291040501080705247040148376, −20.8700391578672044201616791147, −19.76794410515203531466019310653, −19.333277029450387953413386934416, −18.3646878648322547140676160575, −17.78565333649821273302755315619, −16.77554904110470397808740700205, −16.01672669193957933157307357561, −15.33945007243675610419851088962, −14.523195592131632672828801136617, −13.6690509956741044446208265178, −12.712640620287273601632749424, −12.10295469292063106182930468218, −11.36961982081919325794860594998, −10.219189098575889992181390700, −9.35584209820740338081402283283, −9.03076997073593347151850731362, −7.56037067337456574473215982881, −7.069557702489127876396363091101, −5.99336531874955146378319712351, −5.12857042114243225839686856771, −4.26645819742223549303661739180, −3.01293482953365594534315616546, −2.337136634965502451250330864485, −1.069597461001982539293916678028,
0.39783042067530926914226842620, 1.16628678986523594795674615176, 2.79272231866987513889937415107, 3.39924147660541090142321182171, 4.39073456493987984753231244796, 5.61750826685530193283923231154, 6.16381384264966156547254157567, 7.36872918737338255742726998243, 7.95219951167970383111388812770, 8.94578022322866864554769715556, 10.02302942752988425279843408212, 10.48613213981165136628890648427, 11.37220967095854570769390128078, 12.582018384624222502410454670381, 12.93450428174366808923461335128, 14.03697714548161298921926150586, 14.549088816942322599470563390247, 15.674280219802003282733460932106, 16.43180324552295718111143193710, 16.93227847264534359163816152755, 17.88713911493008963529412527894, 18.85185399492983064152245866829, 19.35059560921308760880193835388, 20.30542914850667948968866103343, 20.85929785623652353230765377644