Refine search
Galois conjugate representations are grouped into single lines.
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ |
---|---|---|---|---|---|---|
2.39.4t3.a.a | $2$ | $ 3 \cdot 13 $ | 4.0.117.1 | $D_{4}$ | $1$ | $0$ |
2.55.4t3.c.a | $2$ | $ 5 \cdot 11 $ | 4.2.275.1 | $D_{4}$ | $1$ | $0$ |
2.56.4t3.b.a | $2$ | $ 2^{3} \cdot 7 $ | 4.0.392.1 | $D_{4}$ | $1$ | $0$ |
2.63.4t3.a.a | $2$ | $ 3^{2} \cdot 7 $ | 4.0.189.1 | $D_{4}$ | $1$ | $0$ |
2.68.4t3.a.a | $2$ | $ 2^{2} \cdot 17 $ | 4.0.272.1 | $D_{4}$ | $1$ | $0$ |
2.80.4t3.a.a | $2$ | $ 2^{4} \cdot 5 $ | 4.0.320.1 | $D_{4}$ | $1$ | $0$ |
2.95.4t3.c.a | $2$ | $ 5 \cdot 19 $ | 4.2.475.1 | $D_{4}$ | $1$ | $0$ |
2.111.4t3.a.a | $2$ | $ 3 \cdot 37 $ | 4.0.333.1 | $D_{4}$ | $1$ | $0$ |
2.128.4t3.a.a | $2$ | $ 2^{7}$ | 4.0.512.1 | $D_{4}$ | $1$ | $0$ |
2.136.4t3.a.a | $2$ | $ 2^{3} \cdot 17 $ | 4.0.1088.2 | $D_{4}$ | $1$ | $-2$ |
2.136.4t3.b.a | $2$ | $ 2^{3} \cdot 17 $ | 4.0.1088.1 | $D_{4}$ | $1$ | $0$ |
2.144.4t3.b.a | $2$ | $ 2^{4} \cdot 3^{2}$ | 4.0.432.1 | $D_{4}$ | $1$ | $0$ |
2.145.4t3.b.a | $2$ | $ 5 \cdot 29 $ | 4.4.725.1 | $D_{4}$ | $1$ | $2$ |
2.155.4t3.c.a | $2$ | $ 5 \cdot 31 $ | 4.2.775.1 | $D_{4}$ | $1$ | $0$ |
2.164.4t3.c.a | $2$ | $ 2^{2} \cdot 41 $ | 4.0.656.1 | $D_{4}$ | $1$ | $0$ |
2.171.4t3.c.a | $2$ | $ 3^{2} \cdot 19 $ | 4.0.513.1 | $D_{4}$ | $1$ | $0$ |
2.183.4t3.a.a | $2$ | $ 3 \cdot 61 $ | 4.0.549.1 | $D_{4}$ | $1$ | $0$ |
2.184.4t3.c.a | $2$ | $ 2^{3} \cdot 23 $ | 4.2.1472.2 | $D_{4}$ | $1$ | $0$ |
2.196.4t3.a.a | $2$ | $ 2^{2} \cdot 7^{2}$ | 4.0.1372.1 | $D_{4}$ | $1$ | $0$ |
2.203.4t3.a.a | $2$ | $ 7 \cdot 29 $ | 4.0.1421.1 | $D_{4}$ | $1$ | $0$ |
2.205.4t3.a.a | $2$ | $ 5 \cdot 41 $ | 4.0.1025.1 | $D_{4}$ | $1$ | $-2$ |
2.208.4t3.c.a | $2$ | $ 2^{4} \cdot 13 $ | 4.0.832.1 | $D_{4}$ | $1$ | $0$ |
2.219.4t3.c.a | $2$ | $ 3 \cdot 73 $ | 4.0.657.1 | $D_{4}$ | $1$ | $0$ |
2.221.4t3.b.a | $2$ | $ 13 \cdot 17 $ | 4.0.2873.1 | $D_{4}$ | $1$ | $-2$ |
2.224.4t3.a.a | $2$ | $ 2^{5} \cdot 7 $ | 4.0.1568.1 | $D_{4}$ | $1$ | $0$ |
2.248.4t3.c.a | $2$ | $ 2^{3} \cdot 31 $ | 4.2.1984.1 | $D_{4}$ | $1$ | $0$ |
2.256.4t3.c.a | $2$ | $ 2^{8}$ | 4.2.2048.1 | $D_{4}$ | $1$ | $0$ |
2.259.4t3.a.a | $2$ | $ 7 \cdot 37 $ | 4.0.1813.1 | $D_{4}$ | $1$ | $0$ |
2.260.4t3.a.a | $2$ | $ 2^{2} \cdot 5 \cdot 13 $ | 4.0.1040.2 | $D_{4}$ | $1$ | $0$ |
2.260.4t3.b.a | $2$ | $ 2^{2} \cdot 5 \cdot 13 $ | 4.0.1040.1 | $D_{4}$ | $1$ | $0$ |
2.264.4t3.c.a | $2$ | $ 2^{3} \cdot 3 \cdot 11 $ | 4.0.2112.2 | $D_{4}$ | $1$ | $0$ |
2.264.4t3.d.a | $2$ | $ 2^{3} \cdot 3 \cdot 11 $ | 4.0.2112.1 | $D_{4}$ | $1$ | $0$ |
2.275.4t3.c.a | $2$ | $ 5^{2} \cdot 11 $ | 4.2.1375.1 | $D_{4}$ | $1$ | $0$ |
2.276.4t3.e.a | $2$ | $ 2^{2} \cdot 3 \cdot 23 $ | 4.2.3312.1 | $D_{4}$ | $1$ | $0$ |
2.276.4t3.f.a | $2$ | $ 2^{2} \cdot 3 \cdot 23 $ | 4.2.3312.2 | $D_{4}$ | $1$ | $0$ |
2.279.4t3.b.a | $2$ | $ 3^{2} \cdot 31 $ | 4.0.837.1 | $D_{4}$ | $1$ | $0$ |
2.291.4t3.c.a | $2$ | $ 3 \cdot 97 $ | 4.0.873.1 | $D_{4}$ | $1$ | $0$ |
2.292.4t3.a.a | $2$ | $ 2^{2} \cdot 73 $ | 4.0.1168.1 | $D_{4}$ | $1$ | $0$ |
2.295.4t3.c.a | $2$ | $ 5 \cdot 59 $ | 4.2.1475.1 | $D_{4}$ | $1$ | $0$ |
2.299.4t3.a.a | $2$ | $ 13 \cdot 23 $ | 4.2.3887.1 | $D_{4}$ | $1$ | $0$ |
2.305.4t3.a.a | $2$ | $ 5 \cdot 61 $ | 4.0.1525.1 | $D_{4}$ | $1$ | $-2$ |
2.308.4t3.c.a | $2$ | $ 2^{2} \cdot 7 \cdot 11 $ | 4.0.2156.1 | $D_{4}$ | $1$ | $0$ |
2.308.4t3.d.a | $2$ | $ 2^{2} \cdot 7 \cdot 11 $ | 4.0.2156.2 | $D_{4}$ | $1$ | $0$ |
2.320.4t3.a.a | $2$ | $ 2^{6} \cdot 5 $ | 4.0.1280.1 | $D_{4}$ | $1$ | $0$ |
2.323.4t3.a.a | $2$ | $ 17 \cdot 19 $ | 4.2.5491.1 | $D_{4}$ | $1$ | $0$ |
2.327.4t3.c.a | $2$ | $ 3 \cdot 109 $ | 4.0.981.1 | $D_{4}$ | $1$ | $0$ |
2.328.4t3.c.a | $2$ | $ 2^{3} \cdot 41 $ | 4.4.2624.1 | $D_{4}$ | $1$ | $2$ |
2.328.4t3.d.a | $2$ | $ 2^{3} \cdot 41 $ | 4.0.2624.1 | $D_{4}$ | $1$ | $0$ |
2.336.4t3.a.a | $2$ | $ 2^{4} \cdot 3 \cdot 7 $ | 4.0.1008.1 | $D_{4}$ | $1$ | $0$ |
2.336.4t3.b.a | $2$ | $ 2^{4} \cdot 3 \cdot 7 $ | 4.0.1008.2 | $D_{4}$ | $1$ | $0$ |