Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(68\)\(\medspace = 2^{2} \cdot 17 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.272.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.68.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(i, \sqrt{17})\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} + x^{2} - 2x + 1 \)
|
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 4 + 37\cdot 53 + 35\cdot 53^{2} + 40\cdot 53^{3} + 4\cdot 53^{4} +O(53^{5})\)
$r_{ 2 }$ |
$=$ |
\( 9 + 2\cdot 53 + 44\cdot 53^{2} + 24\cdot 53^{3} + 44\cdot 53^{4} +O(53^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 19 + 25\cdot 53 + 7\cdot 53^{2} + 8\cdot 53^{3} + 51\cdot 53^{4} +O(53^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 21 + 41\cdot 53 + 18\cdot 53^{2} + 32\cdot 53^{3} + 5\cdot 53^{4} +O(53^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,3)(2,4)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,3)$ | $0$ |
$2$ | $4$ | $(1,4,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.