Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.392.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.56.2t1.b.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{2}, \sqrt{-7})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} + x + 1 \) . |
The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 5 + 2\cdot 23 + 17\cdot 23^{2} + 22\cdot 23^{3} + 21\cdot 23^{4} +O(23^{5})\) |
$r_{ 2 }$ | $=$ | \( 9 + 19\cdot 23 + 16\cdot 23^{2} + 2\cdot 23^{3} + 7\cdot 23^{4} +O(23^{5})\) |
$r_{ 3 }$ | $=$ | \( 12 + 9\cdot 23 + 13\cdot 23^{2} + 12\cdot 23^{3} + 6\cdot 23^{4} +O(23^{5})\) |
$r_{ 4 }$ | $=$ | \( 21 + 14\cdot 23 + 21\cdot 23^{2} + 7\cdot 23^{3} + 10\cdot 23^{4} +O(23^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,2)(3,4)$ | $-2$ |
$2$ | $2$ | $(1,3)(2,4)$ | $0$ |
$2$ | $2$ | $(1,2)$ | $0$ |
$2$ | $4$ | $(1,4,2,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.