Properties

Label 2.39.4t3.a.a
Dimension $2$
Group $D_{4}$
Conductor $39$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(39\)\(\medspace = 3 \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.117.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.39.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{13})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 11 + 27\cdot 43 + 43^{2} + 19\cdot 43^{3} + 24\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 + 11\cdot 43 + 32\cdot 43^{2} + 35\cdot 43^{3} + 18\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 25 + 41\cdot 43 + 34\cdot 43^{2} + 27\cdot 43^{3} + 30\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 39 + 5\cdot 43 + 17\cdot 43^{2} + 3\cdot 43^{3} + 12\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.