Properties

Label 2.1.6.11a1.14
Base \(\Q_{2}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(11\)
Galois group $S_4\times C_2$ (as 6T11)

Related objects

Downloads

Learn more

Error: Incorrect local algebra for Q(zeta3)

Defining polynomial

\(x^{6} + 4 x^{3} + 4 x + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $6$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{2}(\sqrt{-2\cdot 5})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3]$
Visible Swan slopes:$[2]$
Means:$\langle1\rangle$
Rams:$(6)$
Jump set:$[3, 9]$
Roots of unity:$2$

Intermediate fields

2.1.3.2a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{6} + 4 x^{3} + 4 x + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + z^{2} + 1$,$z + 1$
Associated inertia:$2$,$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois degree: $48$
Galois group: $C_2\times S_4$ (as 6T11)
Inertia group: $C_2\times A_4$ (as 6T6)
Wild inertia group: $C_2^3$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{8}{3}, \frac{8}{3}, 3]$
Galois Swan slopes: $[\frac{5}{3},\frac{5}{3},2]$
Galois mean slope: $2.5833333333333335$
Galois splitting model: $x^{6} + 2 x^{4} + 2 x^{2} + 10$ Copy content Toggle raw display