Properties

Label 6T11
Order \(48\)
n \(6\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $S_4\times C_2$

Related objects

Group action invariants

Degree $n$ :  $6$
Transitive number $t$ :  $11$
Group :  $S_4\times C_2$
CHM label :  $2S_{4}(6) = [2^{3}]S(3) = 2 wr S(3)$
Parity:  $-1$
Primitive:  No
Generators:   (2,6,5,3), (1,2,3,4,5,6)
$|\Aut(F/K)|$:  $2$
Low degree resolvents:  
2: 2T1, 2T1, 2T1
4: 4T2
6: 3T2
12: 6T3
24: 4T5

Subfields

Degree 2: None

Degree 3: $S_3$

Low degree siblings

6T11b, 8T24a, 8T24b, 12T21, 12T22, 12T23a, 12T23b, 12T24a, 12T24b, 16T61
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 1, 1, 1, 1 $ $3$ $2$ $(3,6)$
$ 2, 2, 1, 1 $ $6$ $2$ $(2,3)(5,6)$
$ 4, 1, 1 $ $6$ $4$ $(2,3,5,6)$
$ 2, 2, 1, 1 $ $3$ $2$ $(2,5)(3,6)$
$ 2, 2, 2 $ $6$ $2$ $(1,2)(3,6)(4,5)$
$ 3, 3 $ $8$ $3$ $(1,2,3)(4,5,6)$
$ 6 $ $8$ $6$ $(1,2,3,4,5,6)$
$ 4, 2 $ $6$ $4$ $(1,2,4,5)(3,6)$
$ 2, 2, 2 $ $1$ $2$ $(1,4)(2,5)(3,6)$

Group invariants

Order:  $48=2^{4} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [48, 48]
Character table:  
      2  4  4  3  3  4  3  1  1  3  4
      3  1  .  .  .  .  .  1  1  .  1

        1a 2a 2b 4a 2c 2d 3a 6a 4b 2e
     2P 1a 1a 1a 2c 1a 1a 3a 3a 2c 1a
     3P 1a 2a 2b 4a 2c 2d 1a 2e 4b 2e
     5P 1a 2a 2b 4a 2c 2d 3a 6a 4b 2e

X.1      1  1  1  1  1  1  1  1  1  1
X.2      1 -1 -1  1  1  1  1 -1 -1 -1
X.3      1 -1  1 -1  1 -1  1 -1  1 -1
X.4      1  1 -1 -1  1 -1  1  1 -1  1
X.5      2 -2  .  .  2  . -1  1  . -2
X.6      2  2  .  .  2  . -1 -1  .  2
X.7      3 -1 -1  1 -1 -1  .  .  1  3
X.8      3 -1  1 -1 -1  1  .  . -1  3
X.9      3  1 -1 -1 -1  1  .  .  1 -3
X.10     3  1  1  1 -1 -1  .  . -1 -3