Defining polynomial
$( x^{2} + x + 1 )^{2} + 2 x ( x^{2} + x + 1 ) + 6$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $4$ |
Ramification index $e$: | $2$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $4$ |
Discriminant root field: | $\Q_{2}(\sqrt{-1})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{1}{2}\rangle$ |
Rams: | $(1)$ |
Jump set: | $[1, 3]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + \left(2 t + 2\right) x + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + t$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[1, 0]$ |
Invariants of the Galois closure
Galois degree: | $8$ |
Galois group: | $D_4$ (as 4T3) |
Inertia group: | Intransitive group isomorphic to $C_2^2$ |
Wild inertia group: | $C_2^2$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2]$ |
Galois Swan slopes: | $[1,1]$ |
Galois mean slope: | $1.5$ |
Galois splitting model: | $x^{4} - x^{2} - 1$ |