Properties

Label 2.2.2.4a2.2
Base \(\Q_{2}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(4\)
Galois group $D_{4}$ (as 4T3)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{2} + 2 x ( x^{2} + x + 1 ) + 6$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification index $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(1)$
Jump set:$[1, 3]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(2 t + 2\right) x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $D_4$ (as 4T3)
Inertia group: Intransitive group isomorphic to $C_2^2$
Wild inertia group: $C_2^2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2]$
Galois Swan slopes: $[1,1]$
Galois mean slope: $1.5$
Galois splitting model:$x^{4} - x^{2} - 1$