Properties

Label 2.4.c_b
Base field $\F_{2^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $2$
L-polynomial:  $1 + 2 x + x^{2} + 8 x^{3} + 16 x^{4}$
Frobenius angles:  $\pm0.348885720110$, $\pm0.906432687576$
Angle rank:  $2$ (numerical)
Number field:  4.0.1088.2
Galois group:  $D_{4}$
Jacobians:  $3$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $28$ $224$ $6076$ $65408$ $1011388$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $7$ $15$ $91$ $255$ $987$ $3999$ $16219$ $66303$ $262171$ $1050655$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{2}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is 4.0.1088.2.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{2}}$.

SubfieldPrimitive Model
$\F_{2}$2.2.ac_d
$\F_{2}$2.2.c_d

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.4.ac_b$2$2.16.ac_b