Normalized defining polynomial
\( x^{2} - x + 300648 \)
Invariants
Degree: | $2$ |
| |
Signature: | $[0, 1]$ |
| |
Discriminant: |
\(-1202591\)
\(\medspace = -\,13\cdot 92507\)
|
| |
Root discriminant: | \(1096.63\) |
| |
Galois root discriminant: | $13^{1/2}92507^{1/2}\approx 1096.6271016165888$ | ||
Ramified primes: |
\(13\), \(92507\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-1202591}) \) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1202591=13\cdot 92507\) | ||
Dirichlet character group: | not computed | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-1202591}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{952}$, which has order $952$ |
| |
Narrow class group: | $C_{952}$, which has order $952$ |
| |
Relative class number: | $952$ |
Unit group
Rank: | $0$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Regulator: | \( 1 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr =\mathstrut &\frac{2^{0}\cdot(2\pi)^{1}\cdot 1 \cdot 952}{2\cdot\sqrt{1202591}}\cr\approx \mathstrut & 2.72726818606672 \end{aligned}\]
Galois group
A cyclic group of order 2 |
The 2 conjugacy class representatives for $C_2$ |
Character table for $C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.1.0.1}{1} }^{2}$ | ${\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(13\)
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
\(92507\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |