Normalized defining polynomial
\( x^{8} - 18x^{6} - 134x^{4} + 1482x^{2} - 3887 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-10915287072768\)
\(\medspace = -\,2^{16}\cdot 3^{4}\cdot 13^{2}\cdot 23^{3}\)
|
| |
| Root discriminant: | \(42.63\) |
| |
| Galois root discriminant: | $2^{5/2}3^{1/2}13^{1/2}23^{1/2}\approx 169.42254867637897$ | ||
| Ramified primes: |
\(2\), \(3\), \(13\), \(23\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-23}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{72462}a^{6}-\frac{11237}{72462}a^{4}-\frac{16111}{72462}a^{2}+\frac{2351}{5574}$, $\frac{1}{72462}a^{7}-\frac{11237}{72462}a^{5}-\frac{16111}{72462}a^{3}+\frac{2351}{5574}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{85}{24154}a^{6}-\frac{531}{12077}a^{4}-\frac{16811}{24154}a^{2}+\frac{1908}{929}$, $\frac{134}{36231}a^{6}-\frac{4343}{72462}a^{4}-\frac{21245}{36231}a^{2}+\frac{19715}{5574}$, $\frac{7681}{72462}a^{7}-\frac{6349}{36231}a^{6}-\frac{58924}{36231}a^{5}+\frac{190903}{72462}a^{4}-\frac{1287811}{72462}a^{3}+\frac{950632}{36231}a^{2}+\frac{348904}{2787}a-\frac{1305757}{5574}$, $\frac{2079}{24154}a^{7}-\frac{1229895}{1858}a^{6}-\frac{62829359}{24154}a^{5}+\frac{8119761}{1858}a^{4}+\frac{674893743}{24154}a^{3}+\frac{335659245}{1858}a^{2}+\frac{1107339461}{1858}a+\frac{1158060539}{1858}$
|
| |
| Regulator: | \( 3384.70728393 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 3384.70728393 \cdot 2}{2\cdot\sqrt{10915287072768}}\cr\approx \mathstrut & 1.01649004875 \end{aligned}\]
Galois group
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $(C_4^2 : C_2):C_2$ |
| Character table for $(C_4^2 : C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.2.3312.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 8.2.10915287072768.18 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.8.0.1}{8} }$ | R | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.16b2.6 | $x^{8} + 8 x^{7} + 26 x^{6} + 52 x^{5} + 73 x^{4} + 76 x^{3} + 56 x^{2} + 28 x + 17$ | $4$ | $2$ | $16$ | $Q_8:C_2$ | $$[2, 3, 3]^{2}$$ |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(23\)
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |