Normalized defining polynomial
\( x^{6} - 2x^{5} + 4x^{4} - 30x^{3} + 64x^{2} - 512x + 4096 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-580628570408304\)
\(\medspace = -\,2^{4}\cdot 3\cdot 11\cdot 127\cdot 93053^{2}\)
|
| |
| Root discriminant: | \(288.83\) |
| |
| Galois root discriminant: | $2^{2/3}3^{1/2}11^{1/2}127^{1/2}93053^{1/2}\approx 31348.06104413928$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\), \(127\), \(93053\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-4191}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | deg 8$^{4}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{16}a^{4}-\frac{1}{8}a^{3}+\frac{1}{4}a^{2}+\frac{1}{8}a$, $\frac{1}{256}a^{5}-\frac{1}{128}a^{4}+\frac{1}{64}a^{3}-\frac{15}{128}a^{2}+\frac{1}{4}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{300}$, which has order $600$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{300}$, which has order $600$ (assuming GRH) |
| |
| Relative class number: | $600$ (assuming GRH) |
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{39}{256}a^{5}+\frac{377}{128}a^{4}-\frac{377}{64}a^{3}-\frac{5577}{128}a^{2}-\frac{91}{4}a+805$, $\frac{3759}{64}a^{5}+\frac{35871}{32}a^{4}-\frac{35871}{16}a^{3}-\frac{531945}{32}a^{2}-\frac{70401}{8}a+305939$
|
| |
| Regulator: | \( 708.2998044490024 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 708.2998044490024 \cdot 600}{2\cdot\sqrt{580628570408304}}\cr\approx \mathstrut & 2.18740288578602 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.3.372212.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | deg 2 $\times$ deg 4 |
| Degree 6 sibling: | deg 6 |
| Degree 8 siblings: | deg 8, deg 8 |
| Degree 12 siblings: | deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 |
| Degree 16 sibling: | deg 16 |
| Degree 24 siblings: | deg 24, deg 24, deg 24, deg 24 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
|
\(127\)
| 127.2.1.0a1.1 | $x^{2} + 126 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 127.1.2.1a1.2 | $x^{2} + 381$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 127.2.1.0a1.1 | $x^{2} + 126 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
|
\(93053\)
| $\Q_{93053}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{93053}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |