Normalized defining polynomial
\( x^{10} - x^{9} + 4x^{8} + 5x^{7} - 4x^{6} + 12x^{5} + 8x^{4} + 31x^{3} - 64x^{2} + 70x - 25 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[2, 4]$ |
| |
| Discriminant: |
\(570142663253\)
\(\medspace = 37\cdot 641\cdot 4903^{2}\)
|
| |
| Root discriminant: | \(14.98\) |
| |
| Galois root discriminant: | $37^{1/2}641^{1/2}4903^{1/2}\approx 10783.526834945977$ | ||
| Ramified primes: |
\(37\), \(641\), \(4903\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{23717}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{22836575}a^{9}+\frac{424014}{22836575}a^{8}-\frac{213619}{1201925}a^{7}-\frac{2250682}{4567315}a^{6}-\frac{3641204}{22836575}a^{5}+\frac{10048552}{22836575}a^{4}+\frac{2795663}{22836575}a^{3}+\frac{2111876}{22836575}a^{2}-\frac{676824}{22836575}a+\frac{741947}{4567315}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1524614}{22836575}a^{9}-\frac{84504}{22836575}a^{8}+\frac{301109}{1201925}a^{7}+\frac{2472752}{4567315}a^{6}+\frac{3767794}{22836575}a^{5}+\frac{18354428}{22836575}a^{4}+\frac{20081357}{22836575}a^{3}+\frac{67006614}{22836575}a^{2}-\frac{47541136}{22836575}a+\frac{9579353}{4567315}$, $\frac{243171}{22836575}a^{9}+\frac{772269}{22836575}a^{8}+\frac{50726}{1201925}a^{7}+\frac{763828}{4567315}a^{6}+\frac{7304591}{22836575}a^{5}+\frac{2913392}{22836575}a^{4}+\frac{2166198}{22836575}a^{3}+\frac{20936771}{22836575}a^{2}+\frac{22063696}{22836575}a-\frac{7217823}{4567315}$, $\frac{1695181}{22836575}a^{9}-\frac{721591}{22836575}a^{8}+\frac{305511}{1201925}a^{7}+\frac{2356438}{4567315}a^{6}-\frac{1981174}{22836575}a^{5}+\frac{16259937}{22836575}a^{4}+\frac{17409703}{22836575}a^{3}+\frac{59226256}{22836575}a^{2}-\frac{75330294}{22836575}a+\frac{10089282}{4567315}$, $\frac{2837779}{22836575}a^{9}-\frac{1111844}{22836575}a^{8}+\frac{582724}{1201925}a^{7}+\frac{4315352}{4567315}a^{6}+\frac{1354059}{22836575}a^{5}+\frac{41048158}{22836575}a^{4}+\frac{47597477}{22836575}a^{3}+\frac{103495879}{22836575}a^{2}-\frac{98139821}{22836575}a+\frac{27045068}{4567315}$, $\frac{435602}{22836575}a^{9}-\frac{872172}{22836575}a^{8}+\frac{169862}{1201925}a^{7}-\frac{11924}{4567315}a^{6}-\frac{1428183}{22836575}a^{5}+\frac{14508329}{22836575}a^{4}-\frac{9640899}{22836575}a^{3}+\frac{11658627}{22836575}a^{2}-\frac{5704798}{22836575}a+\frac{1253064}{4567315}$
|
| |
| Regulator: | \( 63.5219746692 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 63.5219746692 \cdot 1}{2\cdot\sqrt{570142663253}}\cr\approx \mathstrut & 0.262229586018 \end{aligned}\]
Galois group
$C_2\wr S_5$ (as 10T39):
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for $C_2 \wr S_5$ |
| Character table for $C_2 \wr S_5$ |
Intermediate fields
| 5.3.4903.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}$ | ${\href{/padicField/11.5.0.1}{5} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | R | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.10.0.1}{10} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(37\)
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 37.1.2.1a1.1 | $x^{2} + 37$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 37.4.1.0a1.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(641\)
| $\Q_{641}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{641}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{641}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{641}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
|
\(4903\)
| Deg $4$ | $2$ | $2$ | $2$ | |||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |