Normalized defining polynomial
\( x^{6} - 3x^{5} + 137x^{4} - 202x^{3} + 8911x^{2} + 16013x - 37721 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(290218797023412177\)
\(\medspace = 3^{3}\cdot 67^{4}\cdot 811^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(813.68\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}67^{2/3}811^{1/2}\approx 813.6811521731045$ | ||
Ramified primes: |
\(3\), \(67\), \(811\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{2433}) \) | ||
$\Aut(K/\Q)$: | $C_1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{926248}a^{5}-\frac{14643}{463124}a^{4}-\frac{123573}{926248}a^{3}-\frac{262979}{926248}a^{2}-\frac{363}{115781}a-\frac{160971}{926248}$
Monogenic: | No | |
Index: | $4$ | |
Inessential primes: | $2$ |
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{9408374}{115781}a^{5}+\frac{57210373}{115781}a^{4}-\frac{366746617}{115781}a^{3}+\frac{13125615276}{115781}a^{2}+\frac{21285145543}{115781}a-\frac{51865868042}{115781}$, $\frac{90\!\cdots\!66}{115781}a^{5}+\frac{84\!\cdots\!01}{115781}a^{4}+\frac{10\!\cdots\!91}{115781}a^{3}+\frac{34\!\cdots\!68}{115781}a^{2}-\frac{60\!\cdots\!89}{115781}a-\frac{84\!\cdots\!24}{115781}$, $\frac{12\!\cdots\!45}{926248}a^{5}+\frac{80\!\cdots\!03}{463124}a^{4}+\frac{18\!\cdots\!51}{926248}a^{3}+\frac{91\!\cdots\!93}{926248}a^{2}+\frac{10\!\cdots\!29}{231562}a-\frac{27\!\cdots\!19}{926248}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2770041.75022 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 2770041.75022 \cdot 12}{2\cdot\sqrt{290218797023412177}}\cr\approx \mathstrut & 4.87185691211 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 120 |
The 7 conjugacy class representatives for $\PGL(2,5)$ |
Character table for $\PGL(2,5)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | \(\Q\) $\times$ 5.1.10921737.1 |
Degree 5 sibling: | 5.1.10921737.1 |
Degree 10 siblings: | 10.2.1302792179838097262553.1, deg 10 |
Degree 12 sibling: | deg 12 |
Degree 15 sibling: | deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 24 sibling: | deg 24 |
Degree 30 siblings: | deg 30, deg 30, deg 30 |
Degree 40 sibling: | deg 40 |
Minimal sibling: | 5.1.10921737.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(67\)
| 67.1.3.2a1.1 | $x^{3} + 67$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
67.1.3.2a1.1 | $x^{3} + 67$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
\(811\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |