Normalized defining polynomial
\( x^{7} - 2x^{6} - 2x^{5} + 3x^{4} + 6x^{3} - 7x^{2} + 7x - 9 \)
Invariants
Degree: | $7$ |
| |
Signature: | $[1, 3]$ |
| |
Discriminant: |
\(-170783979\)
\(\medspace = -\,3\cdot 1283\cdot 44371\)
|
| |
Root discriminant: | \(15.00\) |
| |
Galois root discriminant: | $3^{1/2}1283^{1/2}44371^{1/2}\approx 13068.4344509968$ | ||
Ramified primes: |
\(3\), \(1283\), \(44371\)
|
| |
Discriminant root field: | $\Q(\sqrt{-170783979}$) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{6}a^{6}+\frac{1}{6}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{6}a-\frac{1}{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{3}a^{6}-\frac{2}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{2}{3}a+1$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-a^{4}+a^{2}-\frac{5}{2}a+5$, $\frac{1}{6}a^{6}-\frac{1}{2}a^{5}-\frac{1}{3}a^{4}+\frac{4}{3}a^{3}+\frac{5}{3}a^{2}-\frac{23}{6}a+1$
|
| |
Regulator: | \( 47.9952053241 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 47.9952053241 \cdot 1}{2\cdot\sqrt{170783979}}\cr\approx \mathstrut & 0.910990598721 \end{aligned}\]
Galois group
A non-solvable group of order 5040 |
The 15 conjugacy class representatives for $S_7$ |
Character table for $S_7$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 14 sibling: | deg 14 |
Degree 21 sibling: | deg 21 |
Degree 30 sibling: | deg 30 |
Degree 35 sibling: | deg 35 |
Degree 42 siblings: | deg 42, some data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.3.0.1}{3} }$ | R | ${\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
\(1283\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
\(44371\)
| $\Q_{44371}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |