Normalized defining polynomial
\( x^{6} - x^{5} - 3x^{4} + 2x^{2} + 4x + 1 \)
Invariants
Degree: | $6$ |
| |
Signature: | $[4, 1]$ |
| |
Discriminant: |
\(-958527\)
\(\medspace = -\,3^{3}\cdot 131\cdot 271\)
|
| |
Root discriminant: | \(9.93\) |
| |
Galois root discriminant: | $3^{1/2}131^{1/2}271^{1/2}\approx 326.3479737948437$ | ||
Ramified primes: |
\(3\), \(131\), \(271\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-106503}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a$, $a^{2}-a-1$, $a^{5}-a^{4}-2a^{3}+a+2$, $a^{3}-2a$
|
| |
Regulator: | \( 8.85126834693 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{1}\cdot 8.85126834693 \cdot 1}{2\cdot\sqrt{958527}}\cr\approx \mathstrut & 0.454436480428 \end{aligned}\]
Galois group
A non-solvable group of order 720 |
The 11 conjugacy class representatives for $S_6$ |
Character table for $S_6$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | 6.0.134227967569503.1 |
Degree 6 sibling: | 6.0.134227967569503.1 |
Degree 10 sibling: | 10.4.1208051708125527.1 |
Degree 12 siblings: | deg 12, deg 12 |
Degree 15 siblings: | deg 15, deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
Degree 36 sibling: | deg 36 |
Degree 40 siblings: | deg 40, deg 40, deg 40 |
Degree 45 sibling: | deg 45 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | ${\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.3.2.3a1.1 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
\(131\)
| $\Q_{131}$ | $x + 129$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
131.1.2.1a1.1 | $x^{2} + 131$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
131.3.1.0a1.1 | $x^{3} + 3 x + 129$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
\(271\)
| $\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.106503.2t1.a.a | $1$ | $ 3 \cdot 131 \cdot 271 $ | \(\Q(\sqrt{-106503}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 5.958527.6t16.a.a | $5$ | $ 3^{3} \cdot 131 \cdot 271 $ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $3$ |
5.102086001081.12t183.a.a | $5$ | $ 3^{4} \cdot 131^{2} \cdot 271^{2}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $1$ | |
5.142...009.12t183.a.a | $5$ | $ 3^{2} \cdot 131^{4} \cdot 271^{4}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $-3$ | |
5.134...503.6t16.a.a | $5$ | $ 3 \cdot 131^{3} \cdot 271^{3}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $-1$ | |
9.120...527.10t32.a.a | $9$ | $ 3^{3} \cdot 131^{3} \cdot 271^{3}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $3$ | |
9.145...729.20t145.a.a | $9$ | $ 3^{6} \cdot 131^{6} \cdot 271^{6}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $-3$ | |
10.162...081.30t164.a.a | $10$ | $ 3^{4} \cdot 131^{6} \cdot 271^{6}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $-2$ | |
10.115...729.30t164.a.a | $10$ | $ 3^{6} \cdot 131^{4} \cdot 271^{4}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $2$ | |
16.165...561.36t1252.a.a | $16$ | $ 3^{8} \cdot 131^{8} \cdot 271^{8}$ | 6.4.958527.1 | $S_6$ (as 6T16) | $1$ | $0$ |