Properties

Label 40.0.321...761.1
Degree $40$
Signature $[0, 20]$
Discriminant $3.218\times 10^{87}$
Root discriminant \(154.06\)
Ramified primes $17,41$
Class number not computed
Class group not computed
Galois group $C_{40}$ (as 40T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^40 - x^39 + 165*x^38 - 165*x^37 + 12629*x^36 - 12629*x^35 + 595157*x^34 - 595157*x^33 + 19330517*x^32 - 19330517*x^31 + 458986965*x^30 - 458986965*x^29 + 8247186901*x^28 - 8247186901*x^27 + 114533209557*x^26 - 114533209557*x^25 + 1245029995989*x^24 - 1245029995989*x^23 + 10665836549589*x^22 - 10665836549589*x^21 + 72174586435029*x^20 - 72174586435029*x^19 + 385310040397269*x^18 - 385310040397269*x^17 + 1616256307697109*x^16 - 1616256307697109*x^15 + 5295568227538389*x^14 - 5295568227538389*x^13 + 13471816938296789*x^12 - 13471816938296789*x^11 + 26553814875510229*x^10 - 26553814875510229*x^9 + 40944012606445013*x^8 - 40944012606445013*x^7 + 51101799240046037*x^6 - 51101799240046037*x^5 + 55223799613101525*x^4 - 55223799613101525*x^3 + 56012699206030805*x^2 - 56012699206030805*x + 56057779182769621)
 
gp: K = bnfinit(y^40 - y^39 + 165*y^38 - 165*y^37 + 12629*y^36 - 12629*y^35 + 595157*y^34 - 595157*y^33 + 19330517*y^32 - 19330517*y^31 + 458986965*y^30 - 458986965*y^29 + 8247186901*y^28 - 8247186901*y^27 + 114533209557*y^26 - 114533209557*y^25 + 1245029995989*y^24 - 1245029995989*y^23 + 10665836549589*y^22 - 10665836549589*y^21 + 72174586435029*y^20 - 72174586435029*y^19 + 385310040397269*y^18 - 385310040397269*y^17 + 1616256307697109*y^16 - 1616256307697109*y^15 + 5295568227538389*y^14 - 5295568227538389*y^13 + 13471816938296789*y^12 - 13471816938296789*y^11 + 26553814875510229*y^10 - 26553814875510229*y^9 + 40944012606445013*y^8 - 40944012606445013*y^7 + 51101799240046037*y^6 - 51101799240046037*y^5 + 55223799613101525*y^4 - 55223799613101525*y^3 + 56012699206030805*y^2 - 56012699206030805*y + 56057779182769621, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^40 - x^39 + 165*x^38 - 165*x^37 + 12629*x^36 - 12629*x^35 + 595157*x^34 - 595157*x^33 + 19330517*x^32 - 19330517*x^31 + 458986965*x^30 - 458986965*x^29 + 8247186901*x^28 - 8247186901*x^27 + 114533209557*x^26 - 114533209557*x^25 + 1245029995989*x^24 - 1245029995989*x^23 + 10665836549589*x^22 - 10665836549589*x^21 + 72174586435029*x^20 - 72174586435029*x^19 + 385310040397269*x^18 - 385310040397269*x^17 + 1616256307697109*x^16 - 1616256307697109*x^15 + 5295568227538389*x^14 - 5295568227538389*x^13 + 13471816938296789*x^12 - 13471816938296789*x^11 + 26553814875510229*x^10 - 26553814875510229*x^9 + 40944012606445013*x^8 - 40944012606445013*x^7 + 51101799240046037*x^6 - 51101799240046037*x^5 + 55223799613101525*x^4 - 55223799613101525*x^3 + 56012699206030805*x^2 - 56012699206030805*x + 56057779182769621);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 - x^39 + 165*x^38 - 165*x^37 + 12629*x^36 - 12629*x^35 + 595157*x^34 - 595157*x^33 + 19330517*x^32 - 19330517*x^31 + 458986965*x^30 - 458986965*x^29 + 8247186901*x^28 - 8247186901*x^27 + 114533209557*x^26 - 114533209557*x^25 + 1245029995989*x^24 - 1245029995989*x^23 + 10665836549589*x^22 - 10665836549589*x^21 + 72174586435029*x^20 - 72174586435029*x^19 + 385310040397269*x^18 - 385310040397269*x^17 + 1616256307697109*x^16 - 1616256307697109*x^15 + 5295568227538389*x^14 - 5295568227538389*x^13 + 13471816938296789*x^12 - 13471816938296789*x^11 + 26553814875510229*x^10 - 26553814875510229*x^9 + 40944012606445013*x^8 - 40944012606445013*x^7 + 51101799240046037*x^6 - 51101799240046037*x^5 + 55223799613101525*x^4 - 55223799613101525*x^3 + 56012699206030805*x^2 - 56012699206030805*x + 56057779182769621)
 

\( x^{40} - x^{39} + 165 x^{38} - 165 x^{37} + 12629 x^{36} - 12629 x^{35} + 595157 x^{34} + \cdots + 56\!\cdots\!21 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $40$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 20]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(321\!\cdots\!761\) \(\medspace = 17^{20}\cdot 41^{39}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(154.06\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{1/2}41^{39/40}\approx 154.05958406012812$
Ramified primes:   \(17\), \(41\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{41}) \)
$\card{ \Gal(K/\Q) }$:  $40$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(697=17\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{697}(256,·)$, $\chi_{697}(1,·)$, $\chi_{697}(645,·)$, $\chi_{697}(135,·)$, $\chi_{697}(392,·)$, $\chi_{697}(526,·)$, $\chi_{697}(528,·)$, $\chi_{697}(664,·)$, $\chi_{697}(18,·)$, $\chi_{697}(67,·)$, $\chi_{697}(662,·)$, $\chi_{697}(407,·)$, $\chi_{697}(152,·)$, $\chi_{697}(409,·)$, $\chi_{697}(154,·)$, $\chi_{697}(424,·)$, $\chi_{697}(681,·)$, $\chi_{697}(426,·)$, $\chi_{697}(647,·)$, $\chi_{697}(560,·)$, $\chi_{697}(307,·)$, $\chi_{697}(186,·)$, $\chi_{697}(443,·)$, $\chi_{697}(577,·)$, $\chi_{697}(322,·)$, $\chi_{697}(579,·)$, $\chi_{697}(324,·)$, $\chi_{697}(458,·)$, $\chi_{697}(460,·)$, $\chi_{697}(339,·)$, $\chi_{697}(86,·)$, $\chi_{697}(475,·)$, $\chi_{697}(220,·)$, $\chi_{697}(101,·)$, $\chi_{697}(356,·)$, $\chi_{697}(613,·)$, $\chi_{697}(103,·)$, $\chi_{697}(494,·)$, $\chi_{697}(628,·)$, $\chi_{697}(509,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{524288}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{13\!\cdots\!89}a^{21}+\frac{339835402508973}{13\!\cdots\!89}a^{20}+\frac{84}{13\!\cdots\!89}a^{19}-\frac{5184907452938}{13\!\cdots\!89}a^{18}+\frac{3024}{13\!\cdots\!89}a^{17}-\frac{176286853399892}{13\!\cdots\!89}a^{16}+\frac{60928}{13\!\cdots\!89}a^{15}-\frac{33\!\cdots\!20}{13\!\cdots\!89}a^{14}+\frac{752640}{13\!\cdots\!89}a^{13}+\frac{30\!\cdots\!27}{13\!\cdots\!89}a^{12}+\frac{5870592}{13\!\cdots\!89}a^{11}-\frac{19\!\cdots\!79}{13\!\cdots\!89}a^{10}+\frac{28700672}{13\!\cdots\!89}a^{9}+\frac{32\!\cdots\!52}{13\!\cdots\!89}a^{8}+\frac{84344832}{13\!\cdots\!89}a^{7}-\frac{25\!\cdots\!02}{13\!\cdots\!89}a^{6}+\frac{136249344}{13\!\cdots\!89}a^{5}+\frac{36\!\cdots\!42}{13\!\cdots\!89}a^{4}+\frac{100925440}{13\!\cdots\!89}a^{3}+\frac{510595081949785}{13\!\cdots\!89}a^{2}+\frac{22020096}{13\!\cdots\!89}a-\frac{26\!\cdots\!95}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{22}+\frac{88}{13\!\cdots\!89}a^{20}-\frac{13\!\cdots\!92}{13\!\cdots\!89}a^{19}+\frac{3344}{13\!\cdots\!89}a^{18}+\frac{54\!\cdots\!20}{13\!\cdots\!89}a^{17}+\frac{71808}{13\!\cdots\!89}a^{16}-\frac{20\!\cdots\!17}{13\!\cdots\!89}a^{15}+\frac{957440}{13\!\cdots\!89}a^{14}-\frac{25\!\cdots\!25}{13\!\cdots\!89}a^{13}+\frac{8200192}{13\!\cdots\!89}a^{12}+\frac{541751968144198}{13\!\cdots\!89}a^{11}+\frac{45101056}{13\!\cdots\!89}a^{10}+\frac{34\!\cdots\!16}{13\!\cdots\!89}a^{9}+\frac{154632192}{13\!\cdots\!89}a^{8}+\frac{10\!\cdots\!53}{13\!\cdots\!89}a^{7}+\frac{309264384}{13\!\cdots\!89}a^{6}+\frac{21\!\cdots\!06}{13\!\cdots\!89}a^{5}+\frac{317194240}{13\!\cdots\!89}a^{4}+\frac{19\!\cdots\!60}{13\!\cdots\!89}a^{3}+\frac{126877696}{13\!\cdots\!89}a^{2}+\frac{50\!\cdots\!19}{13\!\cdots\!89}a+\frac{8388608}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{23}-\frac{40\!\cdots\!38}{13\!\cdots\!89}a^{20}-\frac{4048}{13\!\cdots\!89}a^{19}+\frac{59\!\cdots\!64}{13\!\cdots\!89}a^{18}-\frac{194304}{13\!\cdots\!89}a^{17}-\frac{171482419434710}{13\!\cdots\!89}a^{16}-\frac{4404224}{13\!\cdots\!89}a^{15}+\frac{39\!\cdots\!66}{13\!\cdots\!89}a^{14}-\frac{58032128}{13\!\cdots\!89}a^{13}+\frac{47\!\cdots\!02}{13\!\cdots\!89}a^{12}-\frac{471511040}{13\!\cdots\!89}a^{11}+\frac{31522325201911}{13\!\cdots\!89}a^{10}-\frac{2371026944}{13\!\cdots\!89}a^{9}+\frac{40\!\cdots\!46}{13\!\cdots\!89}a^{8}-\frac{7113080832}{13\!\cdots\!89}a^{7}-\frac{40\!\cdots\!31}{13\!\cdots\!89}a^{6}-\frac{11672748032}{13\!\cdots\!89}a^{5}-\frac{23\!\cdots\!89}{13\!\cdots\!89}a^{4}-\frac{8754561024}{13\!\cdots\!89}a^{3}+\frac{906009610027406}{13\!\cdots\!89}a^{2}-\frac{1929379840}{13\!\cdots\!89}a+\frac{45\!\cdots\!47}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{24}-\frac{4416}{13\!\cdots\!89}a^{20}-\frac{54\!\cdots\!58}{13\!\cdots\!89}a^{19}-\frac{223744}{13\!\cdots\!89}a^{18}-\frac{18\!\cdots\!32}{13\!\cdots\!89}a^{17}-\frac{5405184}{13\!\cdots\!89}a^{16}-\frac{422039039201498}{13\!\cdots\!89}a^{15}-\frac{76873728}{13\!\cdots\!89}a^{14}+\frac{37\!\cdots\!04}{13\!\cdots\!89}a^{13}-\frac{685834240}{13\!\cdots\!89}a^{12}+\frac{67499621515240}{13\!\cdots\!89}a^{11}-\frac{3879862272}{13\!\cdots\!89}a^{10}-\frac{265477007862653}{13\!\cdots\!89}a^{9}-\frac{13579517952}{13\!\cdots\!89}a^{8}+\frac{23\!\cdots\!34}{13\!\cdots\!89}a^{7}-\frac{27590131712}{13\!\cdots\!89}a^{6}-\frac{36\!\cdots\!67}{13\!\cdots\!89}a^{5}-\frac{28651290624}{13\!\cdots\!89}a^{4}+\frac{50\!\cdots\!96}{13\!\cdots\!89}a^{3}-\frac{11576279040}{13\!\cdots\!89}a^{2}+\frac{514576315530887}{13\!\cdots\!89}a-\frac{771751936}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{25}-\frac{311094447176280}{13\!\cdots\!89}a^{20}+\frac{147200}{13\!\cdots\!89}a^{19}+\frac{24\!\cdots\!38}{13\!\cdots\!89}a^{18}+\frac{7948800}{13\!\cdots\!89}a^{17}-\frac{39\!\cdots\!97}{13\!\cdots\!89}a^{16}+\frac{192184320}{13\!\cdots\!89}a^{15}+\frac{64\!\cdots\!26}{13\!\cdots\!89}a^{14}+\frac{2637824000}{13\!\cdots\!89}a^{13}+\frac{238820080150140}{13\!\cdots\!89}a^{12}+\frac{22044672000}{13\!\cdots\!89}a^{11}+\frac{940619020927043}{13\!\cdots\!89}a^{10}+\frac{113162649600}{13\!\cdots\!89}a^{9}-\frac{22\!\cdots\!61}{13\!\cdots\!89}a^{8}+\frac{344876646400}{13\!\cdots\!89}a^{7}+\frac{50\!\cdots\!60}{13\!\cdots\!89}a^{6}+\frac{573025812480}{13\!\cdots\!89}a^{5}+\frac{56\!\cdots\!38}{13\!\cdots\!89}a^{4}+\frac{434110464000}{13\!\cdots\!89}a^{3}-\frac{16\!\cdots\!27}{13\!\cdots\!89}a^{2}+\frac{96468992000}{13\!\cdots\!89}a+\frac{915717637292910}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{26}+\frac{166400}{13\!\cdots\!89}a^{20}+\frac{13\!\cdots\!80}{13\!\cdots\!89}a^{19}+\frac{9484800}{13\!\cdots\!89}a^{18}-\frac{13\!\cdots\!18}{13\!\cdots\!89}a^{17}+\frac{244408320}{13\!\cdots\!89}a^{16}-\frac{56\!\cdots\!89}{13\!\cdots\!89}a^{15}+\frac{3620864000}{13\!\cdots\!89}a^{14}+\frac{55\!\cdots\!71}{13\!\cdots\!89}a^{13}+\frac{33226752000}{13\!\cdots\!89}a^{12}-\frac{15\!\cdots\!00}{13\!\cdots\!89}a^{11}+\frac{191884492800}{13\!\cdots\!89}a^{10}-\frac{37\!\cdots\!02}{13\!\cdots\!89}a^{9}+\frac{682255974400}{13\!\cdots\!89}a^{8}+\frac{51\!\cdots\!40}{13\!\cdots\!89}a^{7}+\frac{1403498004480}{13\!\cdots\!89}a^{6}-\frac{67\!\cdots\!38}{13\!\cdots\!89}a^{5}+\frac{1472200704000}{13\!\cdots\!89}a^{4}-\frac{18\!\cdots\!61}{13\!\cdots\!89}a^{3}+\frac{599785472000}{13\!\cdots\!89}a^{2}-\frac{48\!\cdots\!71}{13\!\cdots\!89}a+\frac{40265318400}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{27}-\frac{14\!\cdots\!69}{13\!\cdots\!89}a^{20}-\frac{4492800}{13\!\cdots\!89}a^{19}+\frac{49\!\cdots\!75}{13\!\cdots\!89}a^{18}-\frac{258785280}{13\!\cdots\!89}a^{17}+\frac{19\!\cdots\!38}{13\!\cdots\!89}a^{16}-\frac{6517555200}{13\!\cdots\!89}a^{15}+\frac{27\!\cdots\!14}{13\!\cdots\!89}a^{14}-\frac{92012544000}{13\!\cdots\!89}a^{13}+\frac{58\!\cdots\!70}{13\!\cdots\!89}a^{12}-\frac{784982016000}{13\!\cdots\!89}a^{11}+\frac{44\!\cdots\!30}{13\!\cdots\!89}a^{10}-\frac{4093535846400}{13\!\cdots\!89}a^{9}-\frac{65\!\cdots\!28}{13\!\cdots\!89}a^{8}-\frac{12631482040320}{13\!\cdots\!89}a^{7}+\frac{62\!\cdots\!30}{13\!\cdots\!89}a^{6}-\frac{21199690137600}{13\!\cdots\!89}a^{5}+\frac{919988771206860}{13\!\cdots\!89}a^{4}-\frac{16194207744000}{13\!\cdots\!89}a^{3}-\frac{63\!\cdots\!10}{13\!\cdots\!89}a^{2}-\frac{3623878656000}{13\!\cdots\!89}a+\frac{962546127156580}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{28}-\frac{5241600}{13\!\cdots\!89}a^{20}+\frac{54\!\cdots\!70}{13\!\cdots\!89}a^{19}-\frac{318689280}{13\!\cdots\!89}a^{18}-\frac{52\!\cdots\!20}{13\!\cdots\!89}a^{17}-\frac{8554291200}{13\!\cdots\!89}a^{16}-\frac{24\!\cdots\!16}{13\!\cdots\!89}a^{15}-\frac{130351104000}{13\!\cdots\!89}a^{14}+\frac{45\!\cdots\!96}{13\!\cdots\!89}a^{13}-\frac{1221083136000}{13\!\cdots\!89}a^{12}+\frac{55\!\cdots\!84}{13\!\cdots\!89}a^{11}-\frac{7163687731200}{13\!\cdots\!89}a^{10}-\frac{27\!\cdots\!85}{13\!\cdots\!89}a^{9}-\frac{25789275832320}{13\!\cdots\!89}a^{8}+\frac{41\!\cdots\!10}{13\!\cdots\!89}a^{7}-\frac{53588105625600}{13\!\cdots\!89}a^{6}-\frac{25\!\cdots\!80}{13\!\cdots\!89}a^{5}-\frac{56679727104000}{13\!\cdots\!89}a^{4}+\frac{149394891931916}{13\!\cdots\!89}a^{3}-\frac{23253221376000}{13\!\cdots\!89}a^{2}+\frac{65\!\cdots\!15}{13\!\cdots\!89}a-\frac{1570347417600}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{29}+\frac{56\!\cdots\!35}{13\!\cdots\!89}a^{20}+\frac{121605120}{13\!\cdots\!89}a^{19}-\frac{40\!\cdots\!09}{13\!\cdots\!89}a^{18}+\frac{7296307200}{13\!\cdots\!89}a^{17}-\frac{20\!\cdots\!09}{13\!\cdots\!89}a^{16}+\frac{189009100800}{13\!\cdots\!89}a^{15}+\frac{41\!\cdots\!63}{13\!\cdots\!89}a^{14}+\frac{2723954688000}{13\!\cdots\!89}a^{13}+\frac{55\!\cdots\!92}{13\!\cdots\!89}a^{12}+\frac{23607607296000}{13\!\cdots\!89}a^{11}-\frac{11\!\cdots\!02}{13\!\cdots\!89}a^{10}+\frac{124648166522880}{13\!\cdots\!89}a^{9}+\frac{53\!\cdots\!99}{13\!\cdots\!89}a^{8}+\frac{388513765785600}{13\!\cdots\!89}a^{7}-\frac{58\!\cdots\!02}{13\!\cdots\!89}a^{6}+\frac{657484834406400}{13\!\cdots\!89}a^{5}+\frac{27\!\cdots\!83}{13\!\cdots\!89}a^{4}+\frac{505757564928000}{13\!\cdots\!89}a^{3}-\frac{53\!\cdots\!57}{13\!\cdots\!89}a^{2}+\frac{113850187776000}{13\!\cdots\!89}a-\frac{31\!\cdots\!92}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{30}+\frac{145926144}{13\!\cdots\!89}a^{20}-\frac{30\!\cdots\!34}{13\!\cdots\!89}a^{19}+\frac{9241989120}{13\!\cdots\!89}a^{18}+\frac{67\!\cdots\!13}{13\!\cdots\!89}a^{17}+\frac{255162286080}{13\!\cdots\!89}a^{16}+\frac{119081492918020}{13\!\cdots\!89}a^{15}+\frac{3969191116800}{13\!\cdots\!89}a^{14}-\frac{37\!\cdots\!48}{13\!\cdots\!89}a^{13}+\frac{37772171673600}{13\!\cdots\!89}a^{12}-\frac{54\!\cdots\!29}{13\!\cdots\!89}a^{11}+\frac{224366699741184}{13\!\cdots\!89}a^{10}+\frac{735597601300398}{13\!\cdots\!89}a^{9}+\frac{815878908149760}{13\!\cdots\!89}a^{8}+\frac{33\!\cdots\!44}{13\!\cdots\!89}a^{7}+\frac{17\!\cdots\!40}{13\!\cdots\!89}a^{6}-\frac{53\!\cdots\!01}{13\!\cdots\!89}a^{5}+\frac{18\!\cdots\!00}{13\!\cdots\!89}a^{4}+\frac{47\!\cdots\!27}{13\!\cdots\!89}a^{3}+\frac{751411239321600}{13\!\cdots\!89}a^{2}-\frac{63\!\cdots\!02}{13\!\cdots\!89}a+\frac{51004884123648}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{31}-\frac{27\!\cdots\!84}{13\!\cdots\!89}a^{20}-\frac{3015806976}{13\!\cdots\!89}a^{19}+\frac{24\!\cdots\!35}{13\!\cdots\!89}a^{18}-\frac{186118373376}{13\!\cdots\!89}a^{17}+\frac{26\!\cdots\!47}{13\!\cdots\!89}a^{16}-\frac{4921796984832}{13\!\cdots\!89}a^{15}+\frac{22\!\cdots\!88}{13\!\cdots\!89}a^{14}-\frac{72057681346560}{13\!\cdots\!89}a^{13}+\frac{10\!\cdots\!55}{13\!\cdots\!89}a^{12}-\frac{632306153816064}{13\!\cdots\!89}a^{11}+\frac{24\!\cdots\!09}{13\!\cdots\!89}a^{10}-\frac{33\!\cdots\!08}{13\!\cdots\!89}a^{9}-\frac{48\!\cdots\!82}{13\!\cdots\!89}a^{8}+\frac{29\!\cdots\!21}{13\!\cdots\!89}a^{7}+\frac{16\!\cdots\!13}{13\!\cdots\!89}a^{6}-\frac{44\!\cdots\!47}{13\!\cdots\!89}a^{5}+\frac{67\!\cdots\!25}{13\!\cdots\!89}a^{4}-\frac{380240497296371}{13\!\cdots\!89}a^{3}-\frac{54\!\cdots\!06}{13\!\cdots\!89}a^{2}-\frac{31\!\cdots\!76}{13\!\cdots\!89}a-\frac{15\!\cdots\!99}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{32}-\frac{3711762432}{13\!\cdots\!89}a^{20}+\frac{62\!\cdots\!78}{13\!\cdots\!89}a^{19}-\frac{241794809856}{13\!\cdots\!89}a^{18}+\frac{32\!\cdots\!05}{13\!\cdots\!89}a^{17}-\frac{6814795825152}{13\!\cdots\!89}a^{16}+\frac{23\!\cdots\!03}{13\!\cdots\!89}a^{15}-\frac{107690600693760}{13\!\cdots\!89}a^{14}-\frac{55\!\cdots\!65}{13\!\cdots\!89}a^{13}-\frac{10\!\cdots\!64}{13\!\cdots\!89}a^{12}+\frac{53\!\cdots\!49}{13\!\cdots\!89}a^{11}-\frac{62\!\cdots\!84}{13\!\cdots\!89}a^{10}-\frac{28\!\cdots\!10}{13\!\cdots\!89}a^{9}+\frac{43\!\cdots\!70}{13\!\cdots\!89}a^{8}+\frac{51\!\cdots\!57}{13\!\cdots\!89}a^{7}+\frac{62\!\cdots\!60}{13\!\cdots\!89}a^{6}-\frac{169932853724163}{13\!\cdots\!89}a^{5}+\frac{27\!\cdots\!96}{13\!\cdots\!89}a^{4}+\frac{30\!\cdots\!03}{13\!\cdots\!89}a^{3}+\frac{57\!\cdots\!02}{13\!\cdots\!89}a^{2}-\frac{63\!\cdots\!88}{13\!\cdots\!89}a-\frac{14\!\cdots\!12}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{33}-\frac{66\!\cdots\!38}{13\!\cdots\!89}a^{20}+\frac{69993234432}{13\!\cdots\!89}a^{19}-\frac{49\!\cdots\!00}{13\!\cdots\!89}a^{18}+\frac{4409573769216}{13\!\cdots\!89}a^{17}-\frac{40\!\cdots\!87}{13\!\cdots\!89}a^{16}+\frac{118459660763136}{13\!\cdots\!89}a^{15}+\frac{41\!\cdots\!89}{13\!\cdots\!89}a^{14}+\frac{17\!\cdots\!16}{13\!\cdots\!89}a^{13}-\frac{31\!\cdots\!53}{13\!\cdots\!89}a^{12}+\frac{19\!\cdots\!71}{13\!\cdots\!89}a^{11}+\frac{17\!\cdots\!20}{13\!\cdots\!89}a^{10}+\frac{21\!\cdots\!62}{13\!\cdots\!89}a^{9}+\frac{56\!\cdots\!87}{13\!\cdots\!89}a^{8}+\frac{65\!\cdots\!37}{13\!\cdots\!89}a^{7}-\frac{20\!\cdots\!02}{13\!\cdots\!89}a^{6}+\frac{54\!\cdots\!11}{13\!\cdots\!89}a^{5}-\frac{27\!\cdots\!68}{13\!\cdots\!89}a^{4}-\frac{291323302582610}{13\!\cdots\!89}a^{3}+\frac{52\!\cdots\!75}{13\!\cdots\!89}a^{2}-\frac{13\!\cdots\!74}{13\!\cdots\!89}a-\frac{39\!\cdots\!03}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{34}+\frac{88139628544}{13\!\cdots\!89}a^{20}-\frac{46\!\cdots\!57}{13\!\cdots\!89}a^{19}+\frac{5861285298176}{13\!\cdots\!89}a^{18}-\frac{65\!\cdots\!28}{13\!\cdots\!89}a^{17}+\frac{167817852747776}{13\!\cdots\!89}a^{16}+\frac{47\!\cdots\!58}{13\!\cdots\!89}a^{15}+\frac{26\!\cdots\!16}{13\!\cdots\!89}a^{14}+\frac{871993150966549}{13\!\cdots\!89}a^{13}-\frac{10\!\cdots\!18}{13\!\cdots\!89}a^{12}+\frac{429531365413362}{13\!\cdots\!89}a^{11}-\frac{50\!\cdots\!20}{13\!\cdots\!89}a^{10}-\frac{866683425643441}{13\!\cdots\!89}a^{9}-\frac{859159584937519}{13\!\cdots\!89}a^{8}-\frac{453092746065095}{13\!\cdots\!89}a^{7}+\frac{17\!\cdots\!69}{13\!\cdots\!89}a^{6}-\frac{84443374592649}{13\!\cdots\!89}a^{5}+\frac{19\!\cdots\!82}{13\!\cdots\!89}a^{4}-\frac{18\!\cdots\!11}{13\!\cdots\!89}a^{3}-\frac{14\!\cdots\!89}{13\!\cdots\!89}a^{2}+\frac{38\!\cdots\!87}{13\!\cdots\!89}a-\frac{27\!\cdots\!43}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{35}+\frac{39\!\cdots\!93}{13\!\cdots\!89}a^{20}-\frac{1542443499520}{13\!\cdots\!89}a^{19}+\frac{10467333806222}{13\!\cdots\!89}a^{18}-\frac{98716383969280}{13\!\cdots\!89}a^{17}-\frac{18\!\cdots\!55}{13\!\cdots\!89}a^{16}-\frac{26\!\cdots\!16}{13\!\cdots\!89}a^{15}-\frac{418217972437430}{13\!\cdots\!89}a^{14}+\frac{583534736585767}{13\!\cdots\!89}a^{13}-\frac{57\!\cdots\!31}{13\!\cdots\!89}a^{12}-\frac{58\!\cdots\!86}{13\!\cdots\!89}a^{11}+\frac{29\!\cdots\!86}{13\!\cdots\!89}a^{10}-\frac{16\!\cdots\!33}{13\!\cdots\!89}a^{9}-\frac{54\!\cdots\!62}{13\!\cdots\!89}a^{8}+\frac{46\!\cdots\!44}{13\!\cdots\!89}a^{7}-\frac{50\!\cdots\!66}{13\!\cdots\!89}a^{6}-\frac{17\!\cdots\!67}{13\!\cdots\!89}a^{5}-\frac{47\!\cdots\!35}{13\!\cdots\!89}a^{4}-\frac{52\!\cdots\!43}{13\!\cdots\!89}a^{3}-\frac{41\!\cdots\!89}{13\!\cdots\!89}a^{2}+\frac{653862333503260}{13\!\cdots\!89}a-\frac{44\!\cdots\!95}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{36}-\frac{1983141642240}{13\!\cdots\!89}a^{20}-\frac{35\!\cdots\!54}{13\!\cdots\!89}a^{19}-\frac{133972235386880}{13\!\cdots\!89}a^{18}+\frac{56\!\cdots\!99}{13\!\cdots\!89}a^{17}-\frac{38\!\cdots\!16}{13\!\cdots\!89}a^{16}+\frac{67\!\cdots\!77}{13\!\cdots\!89}a^{15}+\frac{52\!\cdots\!45}{13\!\cdots\!89}a^{14}-\frac{41\!\cdots\!74}{13\!\cdots\!89}a^{13}-\frac{41\!\cdots\!95}{13\!\cdots\!89}a^{12}-\frac{34\!\cdots\!74}{13\!\cdots\!89}a^{11}-\frac{303692048581116}{13\!\cdots\!89}a^{10}+\frac{53\!\cdots\!66}{13\!\cdots\!89}a^{9}-\frac{30\!\cdots\!15}{13\!\cdots\!89}a^{8}-\frac{22\!\cdots\!42}{13\!\cdots\!89}a^{7}-\frac{20\!\cdots\!89}{13\!\cdots\!89}a^{6}-\frac{11\!\cdots\!80}{13\!\cdots\!89}a^{5}+\frac{12\!\cdots\!74}{13\!\cdots\!89}a^{4}-\frac{64\!\cdots\!59}{13\!\cdots\!89}a^{3}+\frac{46\!\cdots\!10}{13\!\cdots\!89}a^{2}+\frac{12\!\cdots\!32}{13\!\cdots\!89}a+\frac{317590276273012}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{37}-\frac{62\!\cdots\!83}{13\!\cdots\!89}a^{20}+\frac{32611662561280}{13\!\cdots\!89}a^{19}+\frac{65\!\cdots\!03}{13\!\cdots\!89}a^{18}+\frac{21\!\cdots\!44}{13\!\cdots\!89}a^{17}-\frac{17\!\cdots\!54}{13\!\cdots\!89}a^{16}+\frac{36\!\cdots\!64}{13\!\cdots\!89}a^{15}+\frac{45\!\cdots\!70}{13\!\cdots\!89}a^{14}+\frac{64\!\cdots\!04}{13\!\cdots\!89}a^{13}+\frac{63\!\cdots\!23}{13\!\cdots\!89}a^{12}+\frac{37\!\cdots\!80}{13\!\cdots\!89}a^{11}-\frac{57\!\cdots\!02}{13\!\cdots\!89}a^{10}+\frac{15\!\cdots\!11}{13\!\cdots\!89}a^{9}-\frac{50\!\cdots\!41}{13\!\cdots\!89}a^{8}-\frac{59\!\cdots\!76}{13\!\cdots\!89}a^{7}-\frac{40\!\cdots\!04}{13\!\cdots\!89}a^{6}-\frac{40\!\cdots\!52}{13\!\cdots\!89}a^{5}+\frac{35\!\cdots\!75}{13\!\cdots\!89}a^{4}-\frac{63\!\cdots\!48}{13\!\cdots\!89}a^{3}+\frac{40\!\cdots\!35}{13\!\cdots\!89}a^{2}-\frac{10\!\cdots\!16}{13\!\cdots\!89}a-\frac{19\!\cdots\!30}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{38}+\frac{42732523356160}{13\!\cdots\!89}a^{20}+\frac{27\!\cdots\!04}{13\!\cdots\!89}a^{19}+\frac{29\!\cdots\!44}{13\!\cdots\!89}a^{18}-\frac{26\!\cdots\!28}{13\!\cdots\!89}a^{17}+\frac{40\!\cdots\!86}{13\!\cdots\!89}a^{16}-\frac{67\!\cdots\!60}{13\!\cdots\!89}a^{15}-\frac{55\!\cdots\!67}{13\!\cdots\!89}a^{14}-\frac{11\!\cdots\!72}{13\!\cdots\!89}a^{13}-\frac{25\!\cdots\!46}{13\!\cdots\!89}a^{12}+\frac{34\!\cdots\!02}{13\!\cdots\!89}a^{11}+\frac{30\!\cdots\!63}{13\!\cdots\!89}a^{10}+\frac{67\!\cdots\!61}{13\!\cdots\!89}a^{9}+\frac{392127932061204}{13\!\cdots\!89}a^{8}-\frac{55\!\cdots\!83}{13\!\cdots\!89}a^{7}-\frac{30\!\cdots\!74}{13\!\cdots\!89}a^{6}+\frac{52\!\cdots\!44}{13\!\cdots\!89}a^{5}+\frac{16\!\cdots\!69}{13\!\cdots\!89}a^{4}+\frac{58\!\cdots\!82}{13\!\cdots\!89}a^{3}-\frac{13\!\cdots\!62}{13\!\cdots\!89}a^{2}-\frac{67\!\cdots\!41}{13\!\cdots\!89}a+\frac{16\!\cdots\!31}{13\!\cdots\!89}$, $\frac{1}{13\!\cdots\!89}a^{39}-\frac{62\!\cdots\!68}{13\!\cdots\!89}a^{20}-\frac{666627364356096}{13\!\cdots\!89}a^{19}+\frac{684395861050029}{13\!\cdots\!89}a^{18}-\frac{28\!\cdots\!53}{13\!\cdots\!89}a^{17}-\frac{846489904231534}{13\!\cdots\!89}a^{16}+\frac{12\!\cdots\!41}{13\!\cdots\!89}a^{15}-\frac{36\!\cdots\!43}{13\!\cdots\!89}a^{14}+\frac{33\!\cdots\!28}{13\!\cdots\!89}a^{13}-\frac{23\!\cdots\!61}{13\!\cdots\!89}a^{12}-\frac{22\!\cdots\!18}{13\!\cdots\!89}a^{11}+\frac{19\!\cdots\!04}{13\!\cdots\!89}a^{10}+\frac{33\!\cdots\!07}{13\!\cdots\!89}a^{9}+\frac{48\!\cdots\!19}{13\!\cdots\!89}a^{8}+\frac{41\!\cdots\!28}{13\!\cdots\!89}a^{7}-\frac{16\!\cdots\!71}{13\!\cdots\!89}a^{6}-\frac{34\!\cdots\!45}{13\!\cdots\!89}a^{5}-\frac{62\!\cdots\!84}{13\!\cdots\!89}a^{4}+\frac{34\!\cdots\!17}{13\!\cdots\!89}a^{3}-\frac{656102084288616}{13\!\cdots\!89}a^{2}-\frac{64\!\cdots\!28}{13\!\cdots\!89}a+\frac{487297682679618}{13\!\cdots\!89}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $19$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^40 - x^39 + 165*x^38 - 165*x^37 + 12629*x^36 - 12629*x^35 + 595157*x^34 - 595157*x^33 + 19330517*x^32 - 19330517*x^31 + 458986965*x^30 - 458986965*x^29 + 8247186901*x^28 - 8247186901*x^27 + 114533209557*x^26 - 114533209557*x^25 + 1245029995989*x^24 - 1245029995989*x^23 + 10665836549589*x^22 - 10665836549589*x^21 + 72174586435029*x^20 - 72174586435029*x^19 + 385310040397269*x^18 - 385310040397269*x^17 + 1616256307697109*x^16 - 1616256307697109*x^15 + 5295568227538389*x^14 - 5295568227538389*x^13 + 13471816938296789*x^12 - 13471816938296789*x^11 + 26553814875510229*x^10 - 26553814875510229*x^9 + 40944012606445013*x^8 - 40944012606445013*x^7 + 51101799240046037*x^6 - 51101799240046037*x^5 + 55223799613101525*x^4 - 55223799613101525*x^3 + 56012699206030805*x^2 - 56012699206030805*x + 56057779182769621)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^40 - x^39 + 165*x^38 - 165*x^37 + 12629*x^36 - 12629*x^35 + 595157*x^34 - 595157*x^33 + 19330517*x^32 - 19330517*x^31 + 458986965*x^30 - 458986965*x^29 + 8247186901*x^28 - 8247186901*x^27 + 114533209557*x^26 - 114533209557*x^25 + 1245029995989*x^24 - 1245029995989*x^23 + 10665836549589*x^22 - 10665836549589*x^21 + 72174586435029*x^20 - 72174586435029*x^19 + 385310040397269*x^18 - 385310040397269*x^17 + 1616256307697109*x^16 - 1616256307697109*x^15 + 5295568227538389*x^14 - 5295568227538389*x^13 + 13471816938296789*x^12 - 13471816938296789*x^11 + 26553814875510229*x^10 - 26553814875510229*x^9 + 40944012606445013*x^8 - 40944012606445013*x^7 + 51101799240046037*x^6 - 51101799240046037*x^5 + 55223799613101525*x^4 - 55223799613101525*x^3 + 56012699206030805*x^2 - 56012699206030805*x + 56057779182769621, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^40 - x^39 + 165*x^38 - 165*x^37 + 12629*x^36 - 12629*x^35 + 595157*x^34 - 595157*x^33 + 19330517*x^32 - 19330517*x^31 + 458986965*x^30 - 458986965*x^29 + 8247186901*x^28 - 8247186901*x^27 + 114533209557*x^26 - 114533209557*x^25 + 1245029995989*x^24 - 1245029995989*x^23 + 10665836549589*x^22 - 10665836549589*x^21 + 72174586435029*x^20 - 72174586435029*x^19 + 385310040397269*x^18 - 385310040397269*x^17 + 1616256307697109*x^16 - 1616256307697109*x^15 + 5295568227538389*x^14 - 5295568227538389*x^13 + 13471816938296789*x^12 - 13471816938296789*x^11 + 26553814875510229*x^10 - 26553814875510229*x^9 + 40944012606445013*x^8 - 40944012606445013*x^7 + 51101799240046037*x^6 - 51101799240046037*x^5 + 55223799613101525*x^4 - 55223799613101525*x^3 + 56012699206030805*x^2 - 56012699206030805*x + 56057779182769621);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 - x^39 + 165*x^38 - 165*x^37 + 12629*x^36 - 12629*x^35 + 595157*x^34 - 595157*x^33 + 19330517*x^32 - 19330517*x^31 + 458986965*x^30 - 458986965*x^29 + 8247186901*x^28 - 8247186901*x^27 + 114533209557*x^26 - 114533209557*x^25 + 1245029995989*x^24 - 1245029995989*x^23 + 10665836549589*x^22 - 10665836549589*x^21 + 72174586435029*x^20 - 72174586435029*x^19 + 385310040397269*x^18 - 385310040397269*x^17 + 1616256307697109*x^16 - 1616256307697109*x^15 + 5295568227538389*x^14 - 5295568227538389*x^13 + 13471816938296789*x^12 - 13471816938296789*x^11 + 26553814875510229*x^10 - 26553814875510229*x^9 + 40944012606445013*x^8 - 40944012606445013*x^7 + 51101799240046037*x^6 - 51101799240046037*x^5 + 55223799613101525*x^4 - 55223799613101525*x^3 + 56012699206030805*x^2 - 56012699206030805*x + 56057779182769621);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{40}$ (as 40T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 40
The 40 conjugacy class representatives for $C_{40}$
Character table for $C_{40}$

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 5.5.2825761.1, 8.0.16266071708815001.1, 10.10.327381934393961.1, \(\Q(\zeta_{41})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20^{2}$ ${\href{/padicField/3.8.0.1}{8} }^{5}$ $20^{2}$ $40$ $40$ $40$ R $40$ ${\href{/padicField/23.5.0.1}{5} }^{8}$ $40$ ${\href{/padicField/31.5.0.1}{5} }^{8}$ ${\href{/padicField/37.10.0.1}{10} }^{4}$ R $20^{2}$ $40$ $40$ ${\href{/padicField/59.5.0.1}{5} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display Deg $40$$2$$20$$20$
\(41\) Copy content Toggle raw display Deg $40$$40$$1$$39$