Properties

Label 24.0.510...000.2
Degree $24$
Signature $[0, 12]$
Discriminant $5.107\times 10^{36}$
Root discriminant \(33.85\)
Ramified primes $2,5,7$
Class number $26$ (GRH)
Class group [26] (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 7*x^22 + 35*x^20 + 154*x^18 + 637*x^16 + 1666*x^14 + 3822*x^12 + 7889*x^10 + 13377*x^8 + 9947*x^6 + 7203*x^4 + 4802*x^2 + 2401)
 
gp: K = bnfinit(y^24 + 7*y^22 + 35*y^20 + 154*y^18 + 637*y^16 + 1666*y^14 + 3822*y^12 + 7889*y^10 + 13377*y^8 + 9947*y^6 + 7203*y^4 + 4802*y^2 + 2401, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 + 7*x^22 + 35*x^20 + 154*x^18 + 637*x^16 + 1666*x^14 + 3822*x^12 + 7889*x^10 + 13377*x^8 + 9947*x^6 + 7203*x^4 + 4802*x^2 + 2401);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 + 7*x^22 + 35*x^20 + 154*x^18 + 637*x^16 + 1666*x^14 + 3822*x^12 + 7889*x^10 + 13377*x^8 + 9947*x^6 + 7203*x^4 + 4802*x^2 + 2401)
 

\( x^{24} + 7 x^{22} + 35 x^{20} + 154 x^{18} + 637 x^{16} + 1666 x^{14} + 3822 x^{12} + 7889 x^{10} + \cdots + 2401 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(5106705043047168064000000000000000000\) \(\medspace = 2^{24}\cdot 5^{18}\cdot 7^{20}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(33.85\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{3/4}7^{5/6}\approx 33.8458843070916$
Ramified primes:   \(2\), \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $24$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(140=2^{2}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{140}(19,·)$, $\chi_{140}(1,·)$, $\chi_{140}(3,·)$, $\chi_{140}(9,·)$, $\chi_{140}(139,·)$, $\chi_{140}(81,·)$, $\chi_{140}(131,·)$, $\chi_{140}(121,·)$, $\chi_{140}(87,·)$, $\chi_{140}(27,·)$, $\chi_{140}(29,·)$, $\chi_{140}(31,·)$, $\chi_{140}(37,·)$, $\chi_{140}(103,·)$, $\chi_{140}(109,·)$, $\chi_{140}(93,·)$, $\chi_{140}(47,·)$, $\chi_{140}(113,·)$, $\chi_{140}(83,·)$, $\chi_{140}(53,·)$, $\chi_{140}(137,·)$, $\chi_{140}(111,·)$, $\chi_{140}(57,·)$, $\chi_{140}(59,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7}a^{6}$, $\frac{1}{7}a^{7}$, $\frac{1}{7}a^{8}$, $\frac{1}{7}a^{9}$, $\frac{1}{7}a^{10}$, $\frac{1}{7}a^{11}$, $\frac{1}{49}a^{12}$, $\frac{1}{49}a^{13}$, $\frac{1}{49}a^{14}$, $\frac{1}{49}a^{15}$, $\frac{1}{49}a^{16}$, $\frac{1}{49}a^{17}$, $\frac{1}{998473}a^{18}-\frac{661}{142639}a^{16}-\frac{1014}{142639}a^{14}-\frac{754}{142639}a^{12}+\frac{613}{20377}a^{10}+\frac{928}{20377}a^{8}-\frac{131}{20377}a^{6}-\frac{739}{2911}a^{4}-\frac{1072}{2911}a^{2}-\frac{200}{2911}$, $\frac{1}{998473}a^{19}-\frac{661}{142639}a^{17}-\frac{1014}{142639}a^{15}-\frac{754}{142639}a^{13}+\frac{613}{20377}a^{11}+\frac{928}{20377}a^{9}-\frac{131}{20377}a^{7}-\frac{739}{2911}a^{5}-\frac{1072}{2911}a^{3}-\frac{200}{2911}a$, $\frac{1}{998473}a^{20}-\frac{946}{20377}a^{10}+\frac{298}{2911}$, $\frac{1}{998473}a^{21}-\frac{946}{20377}a^{11}+\frac{298}{2911}a$, $\frac{1}{998473}a^{22}-\frac{800}{142639}a^{12}+\frac{298}{2911}a^{2}$, $\frac{1}{998473}a^{23}-\frac{800}{142639}a^{13}+\frac{298}{2911}a^{3}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{26}$, which has order $26$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{311}{998473} a^{22} + \frac{311}{142639} a^{20} + \frac{10907}{998473} a^{18} + \frac{6842}{142639} a^{16} + \frac{4043}{20377} a^{14} + \frac{10574}{20377} a^{12} + \frac{24258}{20377} a^{10} + \frac{49636}{20377} a^{8} + \frac{12129}{2911} a^{6} + \frac{9019}{2911} a^{4} + \frac{6531}{2911} a^{2} + \frac{4354}{2911} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13}{998473}a^{22}-\frac{1667}{142639}a^{12}+\frac{3874}{2911}a^{2}+1$, $\frac{26}{998473}a^{22}-\frac{3334}{142639}a^{12}+\frac{4837}{2911}a^{2}$, $\frac{116}{998473}a^{22}+\frac{580}{998473}a^{20}+\frac{2552}{998473}a^{18}+\frac{1508}{142639}a^{16}+\frac{5973}{142639}a^{14}+\frac{9048}{142639}a^{12}+\frac{2668}{20377}a^{10}+\frac{4524}{20377}a^{8}+\frac{3364}{20377}a^{6}-\frac{2511}{2911}a^{4}+\frac{232}{2911}a^{2}+\frac{116}{2911}$, $\frac{298}{998473}a^{22}+\frac{30}{14063}a^{20}+\frac{10907}{998473}a^{18}+\frac{6842}{142639}a^{16}+\frac{4043}{20377}a^{14}+\frac{75685}{142639}a^{12}+\frac{25055}{20377}a^{10}+\frac{49636}{20377}a^{8}+\frac{12129}{2911}a^{6}+\frac{9019}{2911}a^{4}+\frac{2657}{2911}a^{2}-\frac{919}{2911}$, $\frac{583}{998473}a^{22}+\frac{3874}{998473}a^{20}+\frac{2682}{142639}a^{18}+\frac{11623}{142639}a^{16}+\frac{47680}{142639}a^{14}+\frac{116397}{142639}a^{12}+\frac{36356}{20377}a^{10}+\frac{72712}{20377}a^{8}+\frac{113930}{20377}a^{6}+\frac{5662}{2911}a^{4}-\frac{825}{2911}$, $\frac{458}{998473}a^{23}+\frac{4}{998473}a^{22}+\frac{2977}{998473}a^{21}+\frac{2061}{142639}a^{19}+\frac{8922}{142639}a^{17}+\frac{36640}{142639}a^{15}+\frac{12595}{20377}a^{13}-\frac{289}{142639}a^{12}+\frac{27938}{20377}a^{11}+\frac{55876}{20377}a^{9}+\frac{89543}{20377}a^{7}+\frac{4351}{2911}a^{5}+\frac{2977}{2911}a^{3}-\frac{1719}{2911}a^{2}+\frac{1603}{2911}a$, $\frac{39}{998473}a^{23}-\frac{704}{998473}a^{22}-\frac{704}{142639}a^{20}-\frac{24643}{998473}a^{18}-\frac{15488}{142639}a^{16}-\frac{9152}{20377}a^{14}-\frac{5001}{142639}a^{13}-\frac{23936}{20377}a^{12}-\frac{54912}{20377}a^{10}-\frac{113417}{20377}a^{8}-\frac{27456}{2911}a^{6}-\frac{20416}{2911}a^{4}+\frac{8711}{2911}a^{3}-\frac{14784}{2911}a^{2}-\frac{9856}{2911}$, $\frac{345}{998473}a^{23}+\frac{1725}{998473}a^{21}+\frac{25}{998473}a^{20}+\frac{7590}{998473}a^{19}+\frac{4485}{142639}a^{17}+\frac{17890}{142639}a^{15}+\frac{26910}{142639}a^{13}+\frac{7935}{20377}a^{11}-\frac{362}{20377}a^{10}+\frac{13455}{20377}a^{9}+\frac{10005}{20377}a^{7}-\frac{8246}{2911}a^{5}+\frac{690}{2911}a^{3}+\frac{345}{2911}a-\frac{1283}{2911}$, $\frac{872}{998473}a^{23}+\frac{3}{20377}a^{22}+\frac{5668}{998473}a^{21}+\frac{800}{998473}a^{20}+\frac{3924}{142639}a^{19}+\frac{3520}{998473}a^{18}+\frac{17025}{142639}a^{17}+\frac{2080}{142639}a^{16}+\frac{69760}{142639}a^{15}+\frac{8339}{142639}a^{14}+\frac{23980}{20377}a^{13}+\frac{2021}{20377}a^{12}+\frac{53192}{20377}a^{11}+\frac{3680}{20377}a^{10}+\frac{106384}{20377}a^{9}+\frac{6240}{20377}a^{8}+\frac{165615}{20377}a^{7}+\frac{4640}{20377}a^{6}+\frac{8284}{2911}a^{5}-\frac{4668}{2911}a^{4}+\frac{5668}{2911}a^{3}-\frac{3554}{2911}a^{2}+\frac{3052}{2911}a-\frac{2751}{2911}$, $\frac{39}{998473}a^{23}+\frac{3}{20377}a^{22}+\frac{800}{998473}a^{20}+\frac{3520}{998473}a^{18}+\frac{2080}{142639}a^{16}+\frac{8339}{142639}a^{14}-\frac{5001}{142639}a^{13}+\frac{2021}{20377}a^{12}+\frac{3680}{20377}a^{10}+\frac{6240}{20377}a^{8}+\frac{4640}{20377}a^{6}-\frac{4668}{2911}a^{4}+\frac{8711}{2911}a^{3}-\frac{3554}{2911}a^{2}+\frac{160}{2911}$, $\frac{458}{998473}a^{23}-\frac{3}{20377}a^{22}+\frac{2977}{998473}a^{21}-\frac{800}{998473}a^{20}+\frac{2061}{142639}a^{19}-\frac{3520}{998473}a^{18}+\frac{8922}{142639}a^{17}-\frac{2080}{142639}a^{16}+\frac{36640}{142639}a^{15}-\frac{8339}{142639}a^{14}+\frac{12595}{20377}a^{13}-\frac{2021}{20377}a^{12}+\frac{27938}{20377}a^{11}-\frac{3680}{20377}a^{10}+\frac{55876}{20377}a^{9}-\frac{6240}{20377}a^{8}+\frac{89543}{20377}a^{7}-\frac{4640}{20377}a^{6}+\frac{4351}{2911}a^{5}+\frac{4668}{2911}a^{4}+\frac{2977}{2911}a^{3}+\frac{3554}{2911}a^{2}+\frac{1603}{2911}a+\frac{2751}{2911}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 24838443.50460296 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 24838443.50460296 \cdot 26}{10\cdot\sqrt{5106705043047168064000000000000000000}}\cr\approx \mathstrut & 0.108189660637048 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 + 7*x^22 + 35*x^20 + 154*x^18 + 637*x^16 + 1666*x^14 + 3822*x^12 + 7889*x^10 + 13377*x^8 + 9947*x^6 + 7203*x^4 + 4802*x^2 + 2401)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 + 7*x^22 + 35*x^20 + 154*x^18 + 637*x^16 + 1666*x^14 + 3822*x^12 + 7889*x^10 + 13377*x^8 + 9947*x^6 + 7203*x^4 + 4802*x^2 + 2401, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 + 7*x^22 + 35*x^20 + 154*x^18 + 637*x^16 + 1666*x^14 + 3822*x^12 + 7889*x^10 + 13377*x^8 + 9947*x^6 + 7203*x^4 + 4802*x^2 + 2401);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 + 7*x^22 + 35*x^20 + 154*x^18 + 637*x^16 + 1666*x^14 + 3822*x^12 + 7889*x^10 + 13377*x^8 + 9947*x^6 + 7203*x^4 + 4802*x^2 + 2401);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{12}$ (as 24T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$

Intermediate fields

\(\Q(\sqrt{35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{7})\), 4.0.98000.1, \(\Q(\zeta_{5})\), 6.6.134456000.1, 6.6.300125.1, \(\Q(\zeta_{28})^+\), 8.0.9604000000.3, 12.12.18078415936000000.1, 12.0.2259801992000000000.1, 12.0.11259376953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }^{2}$ R R ${\href{/padicField/11.6.0.1}{6} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{6}$ ${\href{/padicField/17.12.0.1}{12} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{4}$ ${\href{/padicField/23.12.0.1}{12} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{12}$ ${\href{/padicField/31.3.0.1}{3} }^{8}$ ${\href{/padicField/37.12.0.1}{12} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{12}$ ${\href{/padicField/43.4.0.1}{4} }^{6}$ ${\href{/padicField/47.12.0.1}{12} }^{2}$ ${\href{/padicField/53.12.0.1}{12} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $24$$2$$12$$24$
\(5\) Copy content Toggle raw display Deg $24$$4$$6$$18$
\(7\) Copy content Toggle raw display Deg $24$$6$$4$$20$