Properties

Label 22.2.423...440.1
Degree $22$
Signature $[2, 10]$
Discriminant $4.236\times 10^{47}$
Root discriminant \(146.17\)
Ramified primes see page
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $S_{22}$ (as 22T59)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 8*x + 6)
 
gp: K = bnfinit(y^22 - 8*y + 6, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 8*x + 6);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 8*x + 6)
 

\( x^{22} - 8x + 6 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(423616943333188060347578772565944553233123901440\) \(\medspace = 2^{43}\cdot 3^{21}\cdot 5\cdot 67\cdot 43223\cdot 317963629399156207\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(146.17\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(5\), \(67\), \(43223\), \(317963629399156207\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{27624\!\cdots\!73610}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a-1$, $a^{15}-2a^{8}+1$, $10a^{21}+7a^{20}+9a^{19}-13a^{18}+15a^{17}-27a^{16}+14a^{15}-23a^{14}-a^{13}+14a^{12}-35a^{11}+50a^{10}-58a^{9}+62a^{8}-11a^{7}+17a^{6}+57a^{5}-78a^{4}+110a^{3}-105a^{2}+112a-149$, $20a^{21}+11a^{20}+15a^{19}+16a^{18}-12a^{17}-23a^{16}-9a^{15}-11a^{14}-21a^{13}+15a^{12}+46a^{11}+13a^{10}+11a^{9}+31a^{8}-12a^{7}-74a^{6}-30a^{5}+7a^{4}-52a^{3}+8a^{2}+113a-97$, $18a^{21}+9a^{20}-17a^{19}-2a^{18}+9a^{17}+7a^{16}+2a^{15}-28a^{14}-3a^{13}+50a^{12}-21a^{11}-58a^{10}+46a^{9}+36a^{8}-36a^{7}-10a^{6}-14a^{5}+46a^{4}+73a^{3}-128a^{2}-46a+67$, $23a^{21}+26a^{20}+21a^{19}+9a^{18}+2a^{17}-4a^{16}+3a^{15}+24a^{14}+39a^{13}+51a^{12}+39a^{11}+5a^{10}-33a^{9}-88a^{8}-116a^{7}-111a^{6}-88a^{5}-23a^{4}+29a^{3}+81a^{2}+129a-85$, $1724a^{21}+3727a^{20}-1796a^{19}-4821a^{18}+1725a^{17}+6137a^{16}-1525a^{15}-7777a^{14}+1069a^{13}+9734a^{12}-311a^{11}-12066a^{10}-833a^{9}+14848a^{8}+2503a^{7}-18165a^{6}-4951a^{5}+22013a^{4}+8428a^{3}-26368a^{2}-13168a+17467$, $43a^{21}+62a^{20}+4a^{19}+87a^{18}+18a^{17}+82a^{16}+33a^{15}+39a^{14}+124a^{13}-8a^{12}+139a^{11}-44a^{10}+169a^{9}+35a^{8}+17a^{7}+166a^{6}-65a^{5}+339a^{4}-182a^{3}+259a^{2}+20a-233$, $2360a^{21}+2364a^{20}+2440a^{19}+2685a^{18}+2887a^{17}+2845a^{16}+2778a^{15}+2966a^{14}+3271a^{13}+3473a^{12}+3509a^{11}+3396a^{10}+3409a^{9}+3915a^{8}+4457a^{7}+4276a^{6}+3839a^{5}+4163a^{4}+4906a^{3}+5215a^{2}+5199a-13855$, $1670a^{21}-7187a^{20}+9892a^{19}-7425a^{18}-145a^{17}+9681a^{16}-16042a^{15}+14517a^{14}-3945a^{13}-11890a^{12}+24907a^{11}-26574a^{10}+12853a^{9}+12320a^{8}-36929a^{7}+46183a^{6}-30381a^{5}-7914a^{4}+51813a^{3}-76750a^{2}+62589a-20525$, $4032a^{21}+2049a^{20}-9875a^{19}+19514a^{18}-30848a^{17}+44080a^{16}-59416a^{15}+76511a^{14}-94868a^{13}+114536a^{12}-135391a^{11}+156274a^{10}-175901a^{9}+193940a^{8}-209729a^{7}+220951a^{6}-225212a^{5}+221636a^{4}-208912a^{3}+183580a^{2}-142421a+52135$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2419229210220000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 2419229210220000 \cdot 2}{2\cdot\sqrt{423616943333188060347578772565944553233123901440}}\cr\approx \mathstrut & 1.42576855238952 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 8*x + 6)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 8*x + 6, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 8*x + 6);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 8*x + 6);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{22}$ (as 22T59):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1124000727777607680000
The 1002 conjugacy class representatives for $S_{22}$
Character table for $S_{22}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 44 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $21{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.11.0.1}{11} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ $17{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ $16{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.11.0.1}{11} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.13.0.1}{13} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ $16{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ $16{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $22$$22$$1$$43$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
Deg $18$$3$$6$$18$
\(5\) Copy content Toggle raw display 5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.3.0.1$x^{3} + 3 x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
5.4.0.1$x^{4} + 4 x^{2} + 4 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.11.0.1$x^{11} + 3 x + 3$$1$$11$$0$$C_{11}$$[\ ]^{11}$
\(67\) Copy content Toggle raw display 67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.20.0.1$x^{20} - 2 x + 7$$1$$20$$0$20T1$[\ ]^{20}$
\(43223\) Copy content Toggle raw display $\Q_{43223}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(317963629399156207\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $11$$1$$11$$0$$C_{11}$$[\ ]^{11}$