Properties

Label 22.0.747...779.1
Degree $22$
Signature $[0, 11]$
Discriminant $-7.476\times 10^{45}$
Root discriminant \(121.67\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{22}$ (as 22T59)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 5*x + 6)
 
gp: K = bnfinit(y^22 - 5*y + 6, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 5*x + 6);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 5*x + 6)
 

\( x^{22} - 5x + 6 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 11]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-7475956680035860099059007110342551356066477779\) \(\medspace = -\,3^{21}\cdot 31\cdot 61\cdot 67\cdot 181\cdot 143137\cdot 217732675899704637585877\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(121.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(3\), \(31\), \(61\), \(67\), \(181\), \(143137\), \(217732675899704637585877\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-21440\!\cdots\!70179}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $29a^{21}+39a^{20}+37a^{19}+43a^{18}+55a^{17}+48a^{16}+27a^{15}+23a^{14}+44a^{13}+55a^{12}+42a^{11}+49a^{10}+79a^{9}+77a^{8}+32a^{7}+22a^{5}+32a^{4}-13a^{3}-18a^{2}+48a-61$, $369a^{21}+349a^{20}+285a^{19}+347a^{18}+242a^{17}+226a^{16}+236a^{15}+82a^{14}+179a^{13}+63a^{12}-40a^{11}+66a^{10}-190a^{9}-69a^{8}-104a^{7}-373a^{6}-97a^{5}-421a^{4}-359a^{3}-145a^{2}-690a-2057$, $484a^{21}-489a^{20}+483a^{19}-426a^{18}+383a^{17}-275a^{16}+150a^{15}-a^{14}-235a^{13}+457a^{12}-766a^{11}+1115a^{10}-1478a^{9}+1942a^{8}-2365a^{7}+2863a^{6}-3376a^{5}+3818a^{4}-4325a^{3}+4702a^{2}-5053a+2897$, $256a^{21}+40a^{20}-388a^{19}+388a^{18}+5a^{17}-506a^{16}+566a^{15}-64a^{14}-629a^{13}+771a^{12}-122a^{11}-836a^{10}+1103a^{9}-249a^{8}-1110a^{7}+1617a^{6}-551a^{5}-1327a^{4}+2192a^{3}-903a^{2}-1633a+1681$, $55a^{21}-23a^{19}-a^{18}+55a^{17}+105a^{16}+98a^{15}+23a^{14}-72a^{13}-105a^{12}-24a^{11}+108a^{10}+142a^{9}+35a^{8}-95a^{7}-160a^{6}-157a^{5}-39a^{4}+169a^{3}+222a^{2}-26a-589$, $347a^{21}+342a^{20}-50a^{19}-493a^{18}-511a^{17}+34a^{16}+779a^{15}+1115a^{14}+670a^{13}-298a^{12}-1035a^{11}-888a^{10}+49a^{9}+1000a^{8}+974a^{7}-166a^{6}-1603a^{5}-2028a^{4}-881a^{3}+1240a^{2}+2525a+127$, $321a^{21}-1079a^{20}+286a^{19}+1237a^{18}-1026a^{17}-1007a^{16}+1714a^{15}+211a^{14}-2153a^{13}+1087a^{12}+2125a^{11}-2560a^{10}-1312a^{9}+3704a^{8}-489a^{7}-4091a^{6}+3126a^{5}+3330a^{4}-5851a^{3}-1070a^{2}+7565a-4433$, $239a^{21}-256a^{20}+275a^{19}-277a^{18}+240a^{17}-190a^{16}+146a^{15}-117a^{14}+39a^{13}+109a^{12}-287a^{11}+407a^{10}-523a^{9}+738a^{8}-1061a^{7}+1327a^{6}-1485a^{5}+1668a^{4}-2008a^{3}+2375a^{2}-2577a+1429$, $1727a^{21}+752a^{20}+703a^{19}+766a^{18}-938a^{17}-963a^{16}-754a^{15}-2569a^{14}-1758a^{13}-706a^{12}-2327a^{11}-250a^{10}+1465a^{9}-473a^{8}+2277a^{7}+3797a^{6}+253a^{5}+3080a^{4}+3604a^{3}-2215a^{2}+1101a-7579$, $205a^{21}+95a^{20}-60a^{19}-164a^{18}-268a^{17}-378a^{16}-393a^{15}-342a^{14}-266a^{13}-129a^{12}+52a^{11}+257a^{10}+420a^{9}+503a^{8}+615a^{7}+627a^{6}+408a^{5}+287a^{4}+175a^{3}-259a^{2}-499a-1483$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2404518202930000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{11}\cdot 2404518202930000 \cdot 1}{2\cdot\sqrt{7475956680035860099059007110342551356066477779}}\cr\approx \mathstrut & 8.37805558410868 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 5*x + 6)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 5*x + 6, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 5*x + 6);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 5*x + 6);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{22}$ (as 22T59):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1124000727777607680000
The 1002 conjugacy class representatives for $S_{22}$
Character table for $S_{22}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 44 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{2}{,}\,{\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ R ${\href{/padicField/5.5.0.1}{5} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $17{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $18{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.11.0.1}{11} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ R ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ $20{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
Deg $18$$3$$6$$18$
\(31\) Copy content Toggle raw display $\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
31.2.1.1$x^{2} + 93$$2$$1$$1$$C_2$$[\ ]_{2}$
31.9.0.1$x^{9} + 4 x^{3} + 20 x^{2} + 29 x + 28$$1$$9$$0$$C_9$$[\ ]^{9}$
31.10.0.1$x^{10} + 30 x^{5} + 26 x^{4} + 13 x^{3} + 13 x^{2} + 13 x + 3$$1$$10$$0$$C_{10}$$[\ ]^{10}$
\(61\) Copy content Toggle raw display 61.2.1.1$x^{2} + 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.3.0.1$x^{3} + 7 x + 59$$1$$3$$0$$C_3$$[\ ]^{3}$
61.4.0.1$x^{4} + 3 x^{2} + 40 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
61.13.0.1$x^{13} + 3 x + 59$$1$$13$$0$$C_{13}$$[\ ]^{13}$
\(67\) Copy content Toggle raw display 67.2.1.1$x^{2} + 134$$2$$1$$1$$C_2$$[\ ]_{2}$
67.20.0.1$x^{20} - 2 x + 7$$1$$20$$0$20T1$[\ ]^{20}$
\(181\) Copy content Toggle raw display $\Q_{181}$$x + 179$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 179$$1$$1$$0$Trivial$[\ ]$
181.2.1.1$x^{2} + 181$$2$$1$$1$$C_2$$[\ ]_{2}$
181.4.0.1$x^{4} + 6 x^{2} + 105 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
181.14.0.1$x^{14} - x + 2$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(143137\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(217\!\cdots\!877\) Copy content Toggle raw display $\Q_{21\!\cdots\!77}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$