Properties

Label 21.5.459...209.1
Degree $21$
Signature $[5, 8]$
Discriminant $4.591\times 10^{46}$
Root discriminant \(166.72\)
Ramified primes $3,73,1249,2741,3877,9811$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_3^7.C_2^6:\GL(3,2)$ (as 21T145)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 10*x^20 - 103*x^19 + 1448*x^18 + 2152*x^17 - 83871*x^16 + 149173*x^15 + 2385250*x^14 - 9948420*x^13 - 29032971*x^12 + 247870758*x^11 - 109823779*x^10 - 2879373801*x^9 + 7247306792*x^8 + 9672661015*x^7 - 71078825238*x^6 + 89876215729*x^5 + 141470849513*x^4 - 604358702025*x^3 + 843239380035*x^2 - 569139139934*x + 156657136133)
 
gp: K = bnfinit(y^21 - 10*y^20 - 103*y^19 + 1448*y^18 + 2152*y^17 - 83871*y^16 + 149173*y^15 + 2385250*y^14 - 9948420*y^13 - 29032971*y^12 + 247870758*y^11 - 109823779*y^10 - 2879373801*y^9 + 7247306792*y^8 + 9672661015*y^7 - 71078825238*y^6 + 89876215729*y^5 + 141470849513*y^4 - 604358702025*y^3 + 843239380035*y^2 - 569139139934*y + 156657136133, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 10*x^20 - 103*x^19 + 1448*x^18 + 2152*x^17 - 83871*x^16 + 149173*x^15 + 2385250*x^14 - 9948420*x^13 - 29032971*x^12 + 247870758*x^11 - 109823779*x^10 - 2879373801*x^9 + 7247306792*x^8 + 9672661015*x^7 - 71078825238*x^6 + 89876215729*x^5 + 141470849513*x^4 - 604358702025*x^3 + 843239380035*x^2 - 569139139934*x + 156657136133);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 10*x^20 - 103*x^19 + 1448*x^18 + 2152*x^17 - 83871*x^16 + 149173*x^15 + 2385250*x^14 - 9948420*x^13 - 29032971*x^12 + 247870758*x^11 - 109823779*x^10 - 2879373801*x^9 + 7247306792*x^8 + 9672661015*x^7 - 71078825238*x^6 + 89876215729*x^5 + 141470849513*x^4 - 604358702025*x^3 + 843239380035*x^2 - 569139139934*x + 156657136133)
 

\( x^{21} - 10 x^{20} - 103 x^{19} + 1448 x^{18} + 2152 x^{17} - 83871 x^{16} + 149173 x^{15} + \cdots + 156657136133 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[5, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(45907693464999604842301273030242456313152526209\) \(\medspace = 3^{2}\cdot 73^{2}\cdot 1249^{2}\cdot 2741^{6}\cdot 3877^{2}\cdot 9811^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(166.72\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}73^{2/3}1249^{2/3}2741^{1/2}3877^{2/3}9811^{2/3}\approx 20776771425.4863$
Ramified primes:   \(3\), \(73\), \(1249\), \(2741\), \(3877\), \(9811\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{22\!\cdots\!99}a^{20}-\frac{51\!\cdots\!29}{22\!\cdots\!99}a^{19}-\frac{70\!\cdots\!87}{22\!\cdots\!99}a^{18}-\frac{21\!\cdots\!14}{22\!\cdots\!99}a^{17}-\frac{10\!\cdots\!22}{22\!\cdots\!99}a^{16}+\frac{72\!\cdots\!95}{22\!\cdots\!99}a^{15}+\frac{19\!\cdots\!52}{22\!\cdots\!99}a^{14}+\frac{34\!\cdots\!54}{22\!\cdots\!99}a^{13}+\frac{88\!\cdots\!18}{22\!\cdots\!99}a^{12}-\frac{23\!\cdots\!39}{22\!\cdots\!99}a^{11}-\frac{39\!\cdots\!81}{22\!\cdots\!99}a^{10}+\frac{70\!\cdots\!80}{22\!\cdots\!99}a^{9}+\frac{52\!\cdots\!53}{22\!\cdots\!99}a^{8}+\frac{54\!\cdots\!85}{22\!\cdots\!99}a^{7}-\frac{83\!\cdots\!85}{22\!\cdots\!99}a^{6}+\frac{37\!\cdots\!28}{22\!\cdots\!99}a^{5}+\frac{10\!\cdots\!48}{22\!\cdots\!99}a^{4}-\frac{87\!\cdots\!91}{22\!\cdots\!99}a^{3}-\frac{32\!\cdots\!29}{22\!\cdots\!99}a^{2}+\frac{74\!\cdots\!69}{22\!\cdots\!99}a+\frac{15\!\cdots\!11}{22\!\cdots\!99}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{14\!\cdots\!48}{22\!\cdots\!99}a^{20}-\frac{11\!\cdots\!93}{22\!\cdots\!99}a^{19}-\frac{17\!\cdots\!81}{22\!\cdots\!99}a^{18}+\frac{16\!\cdots\!11}{22\!\cdots\!99}a^{17}+\frac{67\!\cdots\!15}{22\!\cdots\!99}a^{16}-\frac{10\!\cdots\!21}{22\!\cdots\!99}a^{15}-\frac{18\!\cdots\!86}{22\!\cdots\!99}a^{14}+\frac{33\!\cdots\!47}{22\!\cdots\!99}a^{13}-\frac{67\!\cdots\!74}{22\!\cdots\!99}a^{12}-\frac{57\!\cdots\!00}{22\!\cdots\!99}a^{11}+\frac{22\!\cdots\!30}{22\!\cdots\!99}a^{10}+\frac{36\!\cdots\!05}{22\!\cdots\!99}a^{9}-\frac{33\!\cdots\!34}{22\!\cdots\!99}a^{8}+\frac{28\!\cdots\!06}{22\!\cdots\!99}a^{7}+\frac{20\!\cdots\!06}{22\!\cdots\!99}a^{6}-\frac{55\!\cdots\!46}{22\!\cdots\!99}a^{5}+\frac{83\!\cdots\!05}{22\!\cdots\!99}a^{4}+\frac{21\!\cdots\!01}{22\!\cdots\!99}a^{3}-\frac{39\!\cdots\!31}{22\!\cdots\!99}a^{2}+\frac{30\!\cdots\!68}{22\!\cdots\!99}a-\frac{95\!\cdots\!44}{22\!\cdots\!99}$, $\frac{33\!\cdots\!13}{22\!\cdots\!99}a^{20}-\frac{26\!\cdots\!57}{22\!\cdots\!99}a^{19}-\frac{39\!\cdots\!37}{22\!\cdots\!99}a^{18}+\frac{39\!\cdots\!74}{22\!\cdots\!99}a^{17}+\frac{15\!\cdots\!46}{22\!\cdots\!99}a^{16}-\frac{24\!\cdots\!30}{22\!\cdots\!99}a^{15}-\frac{37\!\cdots\!94}{22\!\cdots\!99}a^{14}+\frac{78\!\cdots\!18}{22\!\cdots\!99}a^{13}-\frac{15\!\cdots\!59}{22\!\cdots\!99}a^{12}-\frac{13\!\cdots\!57}{22\!\cdots\!99}a^{11}+\frac{53\!\cdots\!36}{22\!\cdots\!99}a^{10}+\frac{81\!\cdots\!93}{22\!\cdots\!99}a^{9}-\frac{78\!\cdots\!21}{22\!\cdots\!99}a^{8}+\frac{69\!\cdots\!77}{22\!\cdots\!99}a^{7}+\frac{47\!\cdots\!16}{22\!\cdots\!99}a^{6}-\frac{13\!\cdots\!86}{22\!\cdots\!99}a^{5}+\frac{82\!\cdots\!22}{22\!\cdots\!99}a^{4}+\frac{49\!\cdots\!23}{22\!\cdots\!99}a^{3}-\frac{93\!\cdots\!68}{22\!\cdots\!99}a^{2}+\frac{75\!\cdots\!21}{22\!\cdots\!99}a-\frac{23\!\cdots\!55}{22\!\cdots\!99}$, $\frac{20\!\cdots\!58}{22\!\cdots\!99}a^{20}-\frac{14\!\cdots\!19}{22\!\cdots\!99}a^{19}-\frac{25\!\cdots\!76}{22\!\cdots\!99}a^{18}+\frac{22\!\cdots\!20}{22\!\cdots\!99}a^{17}+\frac{10\!\cdots\!00}{22\!\cdots\!99}a^{16}-\frac{13\!\cdots\!85}{22\!\cdots\!99}a^{15}-\frac{10\!\cdots\!05}{22\!\cdots\!99}a^{14}+\frac{45\!\cdots\!93}{22\!\cdots\!99}a^{13}-\frac{70\!\cdots\!00}{22\!\cdots\!99}a^{12}-\frac{79\!\cdots\!26}{22\!\cdots\!99}a^{11}+\frac{27\!\cdots\!11}{22\!\cdots\!99}a^{10}+\frac{57\!\cdots\!34}{22\!\cdots\!99}a^{9}-\frac{42\!\cdots\!93}{22\!\cdots\!99}a^{8}+\frac{25\!\cdots\!18}{22\!\cdots\!99}a^{7}+\frac{27\!\cdots\!71}{22\!\cdots\!99}a^{6}-\frac{65\!\cdots\!77}{22\!\cdots\!99}a^{5}-\frac{94\!\cdots\!53}{22\!\cdots\!99}a^{4}+\frac{26\!\cdots\!36}{22\!\cdots\!99}a^{3}-\frac{46\!\cdots\!79}{22\!\cdots\!99}a^{2}+\frac{35\!\cdots\!67}{22\!\cdots\!99}a-\frac{10\!\cdots\!44}{22\!\cdots\!99}$, $\frac{30\!\cdots\!83}{22\!\cdots\!99}a^{20}-\frac{24\!\cdots\!91}{22\!\cdots\!99}a^{19}-\frac{36\!\cdots\!20}{22\!\cdots\!99}a^{18}+\frac{36\!\cdots\!88}{22\!\cdots\!99}a^{17}+\frac{14\!\cdots\!87}{22\!\cdots\!99}a^{16}-\frac{22\!\cdots\!18}{22\!\cdots\!99}a^{15}-\frac{14\!\cdots\!06}{22\!\cdots\!99}a^{14}+\frac{73\!\cdots\!37}{22\!\cdots\!99}a^{13}-\frac{15\!\cdots\!58}{22\!\cdots\!99}a^{12}-\frac{12\!\cdots\!97}{22\!\cdots\!99}a^{11}+\frac{50\!\cdots\!35}{22\!\cdots\!99}a^{10}+\frac{73\!\cdots\!79}{22\!\cdots\!99}a^{9}-\frac{73\!\cdots\!48}{22\!\cdots\!99}a^{8}+\frac{68\!\cdots\!24}{22\!\cdots\!99}a^{7}+\frac{44\!\cdots\!31}{22\!\cdots\!99}a^{6}-\frac{12\!\cdots\!99}{22\!\cdots\!99}a^{5}+\frac{99\!\cdots\!84}{22\!\cdots\!99}a^{4}+\frac{46\!\cdots\!72}{22\!\cdots\!99}a^{3}-\frac{88\!\cdots\!38}{22\!\cdots\!99}a^{2}+\frac{71\!\cdots\!08}{22\!\cdots\!99}a-\frac{22\!\cdots\!74}{22\!\cdots\!99}$, $\frac{46\!\cdots\!44}{22\!\cdots\!99}a^{20}-\frac{35\!\cdots\!09}{22\!\cdots\!99}a^{19}-\frac{56\!\cdots\!74}{22\!\cdots\!99}a^{18}+\frac{54\!\cdots\!34}{22\!\cdots\!99}a^{17}+\frac{22\!\cdots\!38}{22\!\cdots\!99}a^{16}-\frac{33\!\cdots\!57}{22\!\cdots\!99}a^{15}-\frac{92\!\cdots\!25}{22\!\cdots\!99}a^{14}+\frac{10\!\cdots\!67}{22\!\cdots\!99}a^{13}-\frac{20\!\cdots\!10}{22\!\cdots\!99}a^{12}-\frac{18\!\cdots\!02}{22\!\cdots\!99}a^{11}+\frac{72\!\cdots\!88}{22\!\cdots\!99}a^{10}+\frac{11\!\cdots\!30}{22\!\cdots\!99}a^{9}-\frac{10\!\cdots\!89}{22\!\cdots\!99}a^{8}+\frac{88\!\cdots\!19}{22\!\cdots\!99}a^{7}+\frac{65\!\cdots\!21}{22\!\cdots\!99}a^{6}-\frac{17\!\cdots\!74}{22\!\cdots\!99}a^{5}+\frac{42\!\cdots\!14}{22\!\cdots\!99}a^{4}+\frac{66\!\cdots\!00}{22\!\cdots\!99}a^{3}-\frac{12\!\cdots\!50}{22\!\cdots\!99}a^{2}+\frac{99\!\cdots\!33}{22\!\cdots\!99}a-\frac{31\!\cdots\!36}{22\!\cdots\!99}$, $\frac{58\!\cdots\!00}{22\!\cdots\!99}a^{20}-\frac{35\!\cdots\!06}{22\!\cdots\!99}a^{19}-\frac{73\!\cdots\!29}{22\!\cdots\!99}a^{18}+\frac{55\!\cdots\!80}{22\!\cdots\!99}a^{17}+\frac{34\!\cdots\!69}{22\!\cdots\!99}a^{16}-\frac{34\!\cdots\!58}{22\!\cdots\!99}a^{15}-\frac{53\!\cdots\!06}{22\!\cdots\!99}a^{14}+\frac{11\!\cdots\!95}{22\!\cdots\!99}a^{13}-\frac{10\!\cdots\!72}{22\!\cdots\!99}a^{12}-\frac{20\!\cdots\!06}{22\!\cdots\!99}a^{11}+\frac{55\!\cdots\!47}{22\!\cdots\!99}a^{10}+\frac{16\!\cdots\!57}{22\!\cdots\!99}a^{9}-\frac{91\!\cdots\!82}{22\!\cdots\!99}a^{8}+\frac{21\!\cdots\!67}{22\!\cdots\!99}a^{7}+\frac{62\!\cdots\!95}{22\!\cdots\!99}a^{6}-\frac{12\!\cdots\!95}{22\!\cdots\!99}a^{5}-\frac{50\!\cdots\!46}{22\!\cdots\!99}a^{4}+\frac{55\!\cdots\!39}{22\!\cdots\!99}a^{3}-\frac{90\!\cdots\!50}{22\!\cdots\!99}a^{2}+\frac{66\!\cdots\!17}{22\!\cdots\!99}a-\frac{19\!\cdots\!16}{22\!\cdots\!99}$, $\frac{41\!\cdots\!30}{22\!\cdots\!99}a^{20}-\frac{69\!\cdots\!33}{22\!\cdots\!99}a^{19}-\frac{18\!\cdots\!03}{22\!\cdots\!99}a^{18}+\frac{71\!\cdots\!85}{22\!\cdots\!99}a^{17}-\frac{35\!\cdots\!19}{22\!\cdots\!99}a^{16}-\frac{21\!\cdots\!37}{22\!\cdots\!99}a^{15}+\frac{22\!\cdots\!91}{22\!\cdots\!99}a^{14}-\frac{12\!\cdots\!61}{22\!\cdots\!99}a^{13}-\frac{55\!\cdots\!71}{22\!\cdots\!99}a^{12}+\frac{19\!\cdots\!10}{22\!\cdots\!99}a^{11}+\frac{41\!\cdots\!47}{22\!\cdots\!99}a^{10}-\frac{39\!\cdots\!02}{22\!\cdots\!99}a^{9}+\frac{52\!\cdots\!43}{22\!\cdots\!99}a^{8}+\frac{25\!\cdots\!80}{22\!\cdots\!99}a^{7}-\frac{10\!\cdots\!68}{22\!\cdots\!99}a^{6}+\frac{80\!\cdots\!76}{22\!\cdots\!99}a^{5}+\frac{32\!\cdots\!50}{22\!\cdots\!99}a^{4}-\frac{10\!\cdots\!19}{22\!\cdots\!99}a^{3}+\frac{13\!\cdots\!89}{22\!\cdots\!99}a^{2}-\frac{93\!\cdots\!78}{22\!\cdots\!99}a+\frac{25\!\cdots\!97}{22\!\cdots\!99}$, $\frac{11\!\cdots\!04}{22\!\cdots\!99}a^{20}-\frac{39\!\cdots\!19}{22\!\cdots\!99}a^{19}-\frac{15\!\cdots\!73}{22\!\cdots\!99}a^{18}+\frac{67\!\cdots\!38}{22\!\cdots\!99}a^{17}+\frac{81\!\cdots\!88}{22\!\cdots\!99}a^{16}-\frac{46\!\cdots\!70}{22\!\cdots\!99}a^{15}-\frac{20\!\cdots\!45}{22\!\cdots\!99}a^{14}+\frac{16\!\cdots\!63}{22\!\cdots\!99}a^{13}+\frac{16\!\cdots\!79}{22\!\cdots\!99}a^{12}-\frac{34\!\cdots\!38}{22\!\cdots\!99}a^{11}+\frac{34\!\cdots\!32}{22\!\cdots\!99}a^{10}+\frac{35\!\cdots\!77}{22\!\cdots\!99}a^{9}-\frac{98\!\cdots\!15}{22\!\cdots\!99}a^{8}-\frac{11\!\cdots\!94}{22\!\cdots\!99}a^{7}+\frac{86\!\cdots\!12}{22\!\cdots\!99}a^{6}-\frac{97\!\cdots\!43}{22\!\cdots\!99}a^{5}-\frac{18\!\cdots\!10}{22\!\cdots\!99}a^{4}+\frac{66\!\cdots\!29}{22\!\cdots\!99}a^{3}-\frac{82\!\cdots\!17}{22\!\cdots\!99}a^{2}+\frac{49\!\cdots\!53}{22\!\cdots\!99}a-\frac{11\!\cdots\!21}{22\!\cdots\!99}$, $\frac{49\!\cdots\!62}{22\!\cdots\!99}a^{20}-\frac{21\!\cdots\!76}{22\!\cdots\!99}a^{19}-\frac{59\!\cdots\!32}{22\!\cdots\!99}a^{18}+\frac{32\!\cdots\!62}{22\!\cdots\!99}a^{17}+\frac{27\!\cdots\!13}{22\!\cdots\!99}a^{16}-\frac{19\!\cdots\!39}{22\!\cdots\!99}a^{15}-\frac{56\!\cdots\!42}{22\!\cdots\!99}a^{14}+\frac{59\!\cdots\!83}{22\!\cdots\!99}a^{13}+\frac{12\!\cdots\!33}{22\!\cdots\!99}a^{12}-\frac{10\!\cdots\!11}{22\!\cdots\!99}a^{11}+\frac{14\!\cdots\!29}{22\!\cdots\!99}a^{10}+\frac{82\!\cdots\!66}{22\!\cdots\!99}a^{9}-\frac{25\!\cdots\!97}{22\!\cdots\!99}a^{8}-\frac{16\!\cdots\!33}{22\!\cdots\!99}a^{7}+\frac{15\!\cdots\!07}{22\!\cdots\!99}a^{6}-\frac{16\!\cdots\!59}{22\!\cdots\!99}a^{5}-\frac{22\!\cdots\!94}{22\!\cdots\!99}a^{4}+\frac{59\!\cdots\!33}{22\!\cdots\!99}a^{3}-\frac{34\!\cdots\!44}{22\!\cdots\!99}a^{2}-\frac{90\!\cdots\!82}{22\!\cdots\!99}a+\frac{11\!\cdots\!37}{22\!\cdots\!99}$, $\frac{79\!\cdots\!91}{22\!\cdots\!99}a^{20}-\frac{40\!\cdots\!96}{22\!\cdots\!99}a^{19}-\frac{11\!\cdots\!60}{22\!\cdots\!99}a^{18}+\frac{66\!\cdots\!36}{22\!\cdots\!99}a^{17}+\frac{61\!\cdots\!03}{22\!\cdots\!99}a^{16}-\frac{46\!\cdots\!27}{22\!\cdots\!99}a^{15}-\frac{15\!\cdots\!81}{22\!\cdots\!99}a^{14}+\frac{17\!\cdots\!21}{22\!\cdots\!99}a^{13}+\frac{12\!\cdots\!91}{22\!\cdots\!99}a^{12}-\frac{37\!\cdots\!74}{22\!\cdots\!99}a^{11}+\frac{35\!\cdots\!37}{22\!\cdots\!99}a^{10}+\frac{46\!\cdots\!28}{22\!\cdots\!99}a^{9}-\frac{10\!\cdots\!19}{22\!\cdots\!99}a^{8}-\frac{28\!\cdots\!59}{22\!\cdots\!99}a^{7}+\frac{11\!\cdots\!66}{22\!\cdots\!99}a^{6}+\frac{10\!\cdots\!21}{22\!\cdots\!99}a^{5}-\frac{56\!\cdots\!20}{22\!\cdots\!99}a^{4}+\frac{66\!\cdots\!84}{22\!\cdots\!99}a^{3}+\frac{62\!\cdots\!31}{22\!\cdots\!99}a^{2}-\frac{17\!\cdots\!77}{22\!\cdots\!99}a+\frac{94\!\cdots\!51}{22\!\cdots\!99}$, $\frac{49\!\cdots\!00}{22\!\cdots\!99}a^{20}-\frac{56\!\cdots\!72}{22\!\cdots\!99}a^{19}-\frac{36\!\cdots\!01}{22\!\cdots\!99}a^{18}+\frac{71\!\cdots\!11}{22\!\cdots\!99}a^{17}-\frac{37\!\cdots\!01}{22\!\cdots\!99}a^{16}-\frac{33\!\cdots\!06}{22\!\cdots\!99}a^{15}+\frac{11\!\cdots\!35}{22\!\cdots\!99}a^{14}+\frac{66\!\cdots\!57}{22\!\cdots\!99}a^{13}-\frac{45\!\cdots\!69}{22\!\cdots\!99}a^{12}-\frac{14\!\cdots\!15}{22\!\cdots\!99}a^{11}+\frac{76\!\cdots\!82}{22\!\cdots\!99}a^{10}-\frac{15\!\cdots\!04}{22\!\cdots\!99}a^{9}-\frac{44\!\cdots\!81}{22\!\cdots\!99}a^{8}+\frac{22\!\cdots\!44}{22\!\cdots\!99}a^{7}-\frac{18\!\cdots\!64}{22\!\cdots\!99}a^{6}-\frac{80\!\cdots\!03}{22\!\cdots\!99}a^{5}+\frac{23\!\cdots\!27}{22\!\cdots\!99}a^{4}-\frac{23\!\cdots\!48}{22\!\cdots\!99}a^{3}+\frac{32\!\cdots\!35}{22\!\cdots\!99}a^{2}+\frac{10\!\cdots\!19}{22\!\cdots\!99}a-\frac{57\!\cdots\!61}{22\!\cdots\!99}$, $\frac{98\!\cdots\!13}{22\!\cdots\!99}a^{20}-\frac{59\!\cdots\!11}{22\!\cdots\!99}a^{19}-\frac{12\!\cdots\!21}{22\!\cdots\!99}a^{18}+\frac{93\!\cdots\!32}{22\!\cdots\!99}a^{17}+\frac{58\!\cdots\!22}{22\!\cdots\!99}a^{16}-\frac{59\!\cdots\!06}{22\!\cdots\!99}a^{15}-\frac{89\!\cdots\!48}{22\!\cdots\!99}a^{14}+\frac{20\!\cdots\!87}{22\!\cdots\!99}a^{13}-\frac{18\!\cdots\!88}{22\!\cdots\!99}a^{12}-\frac{36\!\cdots\!96}{22\!\cdots\!99}a^{11}+\frac{10\!\cdots\!13}{22\!\cdots\!99}a^{10}+\frac{29\!\cdots\!06}{22\!\cdots\!99}a^{9}-\frac{16\!\cdots\!92}{22\!\cdots\!99}a^{8}+\frac{48\!\cdots\!20}{22\!\cdots\!99}a^{7}+\frac{11\!\cdots\!21}{22\!\cdots\!99}a^{6}-\frac{24\!\cdots\!34}{22\!\cdots\!99}a^{5}-\frac{86\!\cdots\!01}{22\!\cdots\!99}a^{4}+\frac{10\!\cdots\!32}{22\!\cdots\!99}a^{3}-\frac{17\!\cdots\!57}{22\!\cdots\!99}a^{2}+\frac{13\!\cdots\!71}{22\!\cdots\!99}a-\frac{38\!\cdots\!04}{22\!\cdots\!99}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 830894950455000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{8}\cdot 830894950455000 \cdot 3}{2\cdot\sqrt{45907693464999604842301273030242456313152526209}}\cr\approx \mathstrut & 0.452151074614942 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 10*x^20 - 103*x^19 + 1448*x^18 + 2152*x^17 - 83871*x^16 + 149173*x^15 + 2385250*x^14 - 9948420*x^13 - 29032971*x^12 + 247870758*x^11 - 109823779*x^10 - 2879373801*x^9 + 7247306792*x^8 + 9672661015*x^7 - 71078825238*x^6 + 89876215729*x^5 + 141470849513*x^4 - 604358702025*x^3 + 843239380035*x^2 - 569139139934*x + 156657136133)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 10*x^20 - 103*x^19 + 1448*x^18 + 2152*x^17 - 83871*x^16 + 149173*x^15 + 2385250*x^14 - 9948420*x^13 - 29032971*x^12 + 247870758*x^11 - 109823779*x^10 - 2879373801*x^9 + 7247306792*x^8 + 9672661015*x^7 - 71078825238*x^6 + 89876215729*x^5 + 141470849513*x^4 - 604358702025*x^3 + 843239380035*x^2 - 569139139934*x + 156657136133, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 10*x^20 - 103*x^19 + 1448*x^18 + 2152*x^17 - 83871*x^16 + 149173*x^15 + 2385250*x^14 - 9948420*x^13 - 29032971*x^12 + 247870758*x^11 - 109823779*x^10 - 2879373801*x^9 + 7247306792*x^8 + 9672661015*x^7 - 71078825238*x^6 + 89876215729*x^5 + 141470849513*x^4 - 604358702025*x^3 + 843239380035*x^2 - 569139139934*x + 156657136133);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 10*x^20 - 103*x^19 + 1448*x^18 + 2152*x^17 - 83871*x^16 + 149173*x^15 + 2385250*x^14 - 9948420*x^13 - 29032971*x^12 + 247870758*x^11 - 109823779*x^10 - 2879373801*x^9 + 7247306792*x^8 + 9672661015*x^7 - 71078825238*x^6 + 89876215729*x^5 + 141470849513*x^4 - 604358702025*x^3 + 843239380035*x^2 - 569139139934*x + 156657136133);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^7.C_2^6:\GL(3,2)$ (as 21T145):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 23514624
The 132 conjugacy class representatives for $C_3^7.C_2^6:\GL(3,2)$
Character table for $C_3^7.C_2^6:\GL(3,2)$

Intermediate fields

7.3.7513081.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $21$ R $21$ ${\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ $21$ ${\href{/padicField/13.7.0.1}{7} }^{3}$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{4}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{3}$ ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.7.0.1}{7} }^{3}$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.7.0.1}{7} }^{3}$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.0.1$x^{2} + 2 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} + 2 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} + 2 x^{3} + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.0.1$x^{8} + 2 x^{5} + x^{4} + 2 x^{2} + 2 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
\(73\) Copy content Toggle raw display $\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.3.2.3$x^{3} + 146$$3$$1$$2$$C_3$$[\ ]_{3}$
\(1249\) Copy content Toggle raw display $\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1249}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$3$$1$$2$
\(2741\) Copy content Toggle raw display $\Q_{2741}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2741}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2741}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2741}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2741}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2741}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$2$$2$$2$
Deg $8$$2$$4$$4$
\(3877\) Copy content Toggle raw display $\Q_{3877}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$3$$1$$2$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
\(9811\) Copy content Toggle raw display Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$3$$1$$2$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$