Properties

Label 20.0.967...717.1
Degree $20$
Signature $[0, 10]$
Discriminant $9.678\times 10^{30}$
Root discriminant \(35.42\)
Ramified primes $3,7,11$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_{10}\wr C_2$ (as 20T53)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 54*x^18 - 97*x^17 + 1454*x^16 - 2178*x^15 + 24203*x^14 - 29499*x^13 + 271844*x^12 - 266297*x^11 + 2138211*x^10 - 1737644*x^9 + 11918963*x^8 - 8666349*x^7 + 46563112*x^6 - 30553298*x^5 + 119110990*x^4 - 62702972*x^3 + 173029525*x^2 - 53651341*x + 103856419)
 
gp: K = bnfinit(y^20 - 2*y^19 + 54*y^18 - 97*y^17 + 1454*y^16 - 2178*y^15 + 24203*y^14 - 29499*y^13 + 271844*y^12 - 266297*y^11 + 2138211*y^10 - 1737644*y^9 + 11918963*y^8 - 8666349*y^7 + 46563112*y^6 - 30553298*y^5 + 119110990*y^4 - 62702972*y^3 + 173029525*y^2 - 53651341*y + 103856419, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 2*x^19 + 54*x^18 - 97*x^17 + 1454*x^16 - 2178*x^15 + 24203*x^14 - 29499*x^13 + 271844*x^12 - 266297*x^11 + 2138211*x^10 - 1737644*x^9 + 11918963*x^8 - 8666349*x^7 + 46563112*x^6 - 30553298*x^5 + 119110990*x^4 - 62702972*x^3 + 173029525*x^2 - 53651341*x + 103856419);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 2*x^19 + 54*x^18 - 97*x^17 + 1454*x^16 - 2178*x^15 + 24203*x^14 - 29499*x^13 + 271844*x^12 - 266297*x^11 + 2138211*x^10 - 1737644*x^9 + 11918963*x^8 - 8666349*x^7 + 46563112*x^6 - 30553298*x^5 + 119110990*x^4 - 62702972*x^3 + 173029525*x^2 - 53651341*x + 103856419)
 

\( x^{20} - 2 x^{19} + 54 x^{18} - 97 x^{17} + 1454 x^{16} - 2178 x^{15} + 24203 x^{14} - 29499 x^{13} + \cdots + 103856419 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(9678054300479022526566826737717\) \(\medspace = 3^{10}\cdot 7^{15}\cdot 11^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(35.42\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{3/4}11^{9/10}\approx 64.51156445742586$
Ramified primes:   \(3\), \(7\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{77}) \)
$\card{ \Aut(K/\Q) }$:  $10$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{21\!\cdots\!59}a^{19}-\frac{63\!\cdots\!11}{21\!\cdots\!59}a^{18}+\frac{59\!\cdots\!49}{21\!\cdots\!59}a^{17}+\frac{23\!\cdots\!00}{21\!\cdots\!59}a^{16}+\frac{81\!\cdots\!63}{21\!\cdots\!59}a^{15}+\frac{10\!\cdots\!36}{21\!\cdots\!59}a^{14}+\frac{28\!\cdots\!56}{21\!\cdots\!59}a^{13}-\frac{39\!\cdots\!65}{21\!\cdots\!59}a^{12}+\frac{67\!\cdots\!77}{21\!\cdots\!59}a^{11}+\frac{72\!\cdots\!09}{21\!\cdots\!59}a^{10}-\frac{66\!\cdots\!66}{21\!\cdots\!59}a^{9}-\frac{75\!\cdots\!92}{21\!\cdots\!59}a^{8}+\frac{10\!\cdots\!07}{21\!\cdots\!59}a^{7}-\frac{10\!\cdots\!49}{21\!\cdots\!59}a^{6}-\frac{10\!\cdots\!14}{21\!\cdots\!59}a^{5}-\frac{20\!\cdots\!23}{21\!\cdots\!59}a^{4}-\frac{60\!\cdots\!64}{21\!\cdots\!59}a^{3}+\frac{11\!\cdots\!77}{21\!\cdots\!59}a^{2}-\frac{97\!\cdots\!02}{21\!\cdots\!59}a-\frac{10\!\cdots\!09}{21\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{81\!\cdots\!46}{21\!\cdots\!59}a^{19}+\frac{17\!\cdots\!73}{21\!\cdots\!59}a^{18}+\frac{35\!\cdots\!33}{21\!\cdots\!59}a^{17}+\frac{93\!\cdots\!42}{21\!\cdots\!59}a^{16}+\frac{78\!\cdots\!06}{21\!\cdots\!59}a^{15}+\frac{26\!\cdots\!61}{21\!\cdots\!59}a^{14}+\frac{11\!\cdots\!59}{21\!\cdots\!59}a^{13}+\frac{44\!\cdots\!65}{21\!\cdots\!59}a^{12}+\frac{10\!\cdots\!05}{21\!\cdots\!59}a^{11}+\frac{49\!\cdots\!09}{21\!\cdots\!59}a^{10}+\frac{70\!\cdots\!85}{21\!\cdots\!59}a^{9}+\frac{36\!\cdots\!11}{21\!\cdots\!59}a^{8}+\frac{30\!\cdots\!29}{21\!\cdots\!59}a^{7}+\frac{17\!\cdots\!60}{21\!\cdots\!59}a^{6}+\frac{62\!\cdots\!26}{21\!\cdots\!59}a^{5}+\frac{57\!\cdots\!67}{21\!\cdots\!59}a^{4}+\frac{44\!\cdots\!41}{21\!\cdots\!59}a^{3}+\frac{11\!\cdots\!28}{21\!\cdots\!59}a^{2}-\frac{12\!\cdots\!38}{21\!\cdots\!59}a+\frac{95\!\cdots\!04}{21\!\cdots\!59}$, $\frac{29\!\cdots\!54}{21\!\cdots\!59}a^{19}-\frac{69\!\cdots\!47}{21\!\cdots\!59}a^{18}+\frac{14\!\cdots\!91}{21\!\cdots\!59}a^{17}-\frac{32\!\cdots\!71}{21\!\cdots\!59}a^{16}+\frac{38\!\cdots\!52}{21\!\cdots\!59}a^{15}-\frac{72\!\cdots\!09}{21\!\cdots\!59}a^{14}+\frac{60\!\cdots\!83}{21\!\cdots\!59}a^{13}-\frac{97\!\cdots\!81}{21\!\cdots\!59}a^{12}+\frac{63\!\cdots\!73}{21\!\cdots\!59}a^{11}-\frac{88\!\cdots\!22}{21\!\cdots\!59}a^{10}+\frac{45\!\cdots\!82}{21\!\cdots\!59}a^{9}-\frac{58\!\cdots\!14}{21\!\cdots\!59}a^{8}+\frac{22\!\cdots\!51}{21\!\cdots\!59}a^{7}-\frac{28\!\cdots\!07}{21\!\cdots\!59}a^{6}+\frac{75\!\cdots\!43}{21\!\cdots\!59}a^{5}-\frac{90\!\cdots\!65}{21\!\cdots\!59}a^{4}+\frac{15\!\cdots\!81}{21\!\cdots\!59}a^{3}-\frac{15\!\cdots\!22}{21\!\cdots\!59}a^{2}+\frac{13\!\cdots\!70}{21\!\cdots\!59}a-\frac{95\!\cdots\!42}{21\!\cdots\!59}$, $\frac{18\!\cdots\!44}{21\!\cdots\!59}a^{19}-\frac{32\!\cdots\!94}{21\!\cdots\!59}a^{18}+\frac{93\!\cdots\!20}{21\!\cdots\!59}a^{17}-\frac{14\!\cdots\!54}{21\!\cdots\!59}a^{16}+\frac{23\!\cdots\!14}{21\!\cdots\!59}a^{15}-\frac{30\!\cdots\!02}{21\!\cdots\!59}a^{14}+\frac{37\!\cdots\!12}{21\!\cdots\!59}a^{13}-\frac{36\!\cdots\!09}{21\!\cdots\!59}a^{12}+\frac{39\!\cdots\!54}{21\!\cdots\!59}a^{11}-\frac{28\!\cdots\!18}{21\!\cdots\!59}a^{10}+\frac{28\!\cdots\!65}{21\!\cdots\!59}a^{9}-\frac{16\!\cdots\!70}{21\!\cdots\!59}a^{8}+\frac{14\!\cdots\!56}{21\!\cdots\!59}a^{7}-\frac{72\!\cdots\!86}{21\!\cdots\!59}a^{6}+\frac{49\!\cdots\!73}{21\!\cdots\!59}a^{5}-\frac{21\!\cdots\!41}{21\!\cdots\!59}a^{4}+\frac{97\!\cdots\!70}{21\!\cdots\!59}a^{3}-\frac{26\!\cdots\!86}{21\!\cdots\!59}a^{2}+\frac{80\!\cdots\!90}{21\!\cdots\!59}a+\frac{82\!\cdots\!21}{21\!\cdots\!59}$, $\frac{27\!\cdots\!64}{21\!\cdots\!59}a^{19}-\frac{54\!\cdots\!26}{21\!\cdots\!59}a^{18}+\frac{20\!\cdots\!38}{21\!\cdots\!59}a^{17}-\frac{27\!\cdots\!59}{21\!\cdots\!59}a^{16}+\frac{66\!\cdots\!32}{21\!\cdots\!59}a^{15}-\frac{68\!\cdots\!68}{21\!\cdots\!59}a^{14}+\frac{11\!\cdots\!12}{21\!\cdots\!59}a^{13}-\frac{10\!\cdots\!37}{21\!\cdots\!59}a^{12}+\frac{12\!\cdots\!14}{21\!\cdots\!59}a^{11}-\frac{10\!\cdots\!13}{21\!\cdots\!59}a^{10}+\frac{92\!\cdots\!32}{21\!\cdots\!59}a^{9}-\frac{77\!\cdots\!55}{21\!\cdots\!59}a^{8}+\frac{47\!\cdots\!66}{21\!\cdots\!59}a^{7}-\frac{38\!\cdots\!81}{21\!\cdots\!59}a^{6}+\frac{19\!\cdots\!44}{21\!\cdots\!59}a^{5}-\frac{12\!\cdots\!91}{21\!\cdots\!59}a^{4}+\frac{54\!\cdots\!70}{21\!\cdots\!59}a^{3}-\frac{24\!\cdots\!64}{21\!\cdots\!59}a^{2}+\frac{64\!\cdots\!18}{21\!\cdots\!59}a-\frac{18\!\cdots\!08}{21\!\cdots\!59}$, $\frac{16\!\cdots\!37}{21\!\cdots\!59}a^{19}-\frac{84\!\cdots\!44}{21\!\cdots\!59}a^{18}+\frac{92\!\cdots\!26}{21\!\cdots\!59}a^{17}-\frac{40\!\cdots\!42}{21\!\cdots\!59}a^{16}+\frac{24\!\cdots\!95}{21\!\cdots\!59}a^{15}-\frac{96\!\cdots\!09}{21\!\cdots\!59}a^{14}+\frac{39\!\cdots\!74}{21\!\cdots\!59}a^{13}-\frac{14\!\cdots\!38}{21\!\cdots\!59}a^{12}+\frac{41\!\cdots\!19}{21\!\cdots\!59}a^{11}-\frac{14\!\cdots\!59}{21\!\cdots\!59}a^{10}+\frac{29\!\cdots\!68}{21\!\cdots\!59}a^{9}-\frac{10\!\cdots\!57}{21\!\cdots\!59}a^{8}+\frac{14\!\cdots\!31}{21\!\cdots\!59}a^{7}-\frac{51\!\cdots\!77}{21\!\cdots\!59}a^{6}+\frac{55\!\cdots\!81}{21\!\cdots\!59}a^{5}-\frac{17\!\cdots\!94}{21\!\cdots\!59}a^{4}+\frac{13\!\cdots\!68}{21\!\cdots\!59}a^{3}-\frac{34\!\cdots\!16}{21\!\cdots\!59}a^{2}+\frac{13\!\cdots\!88}{21\!\cdots\!59}a-\frac{28\!\cdots\!65}{21\!\cdots\!59}$, $\frac{50\!\cdots\!67}{21\!\cdots\!59}a^{19}-\frac{97\!\cdots\!50}{21\!\cdots\!59}a^{18}+\frac{44\!\cdots\!31}{21\!\cdots\!59}a^{17}-\frac{48\!\cdots\!48}{21\!\cdots\!59}a^{16}+\frac{15\!\cdots\!27}{21\!\cdots\!59}a^{15}-\frac{12\!\cdots\!40}{21\!\cdots\!59}a^{14}+\frac{27\!\cdots\!51}{21\!\cdots\!59}a^{13}-\frac{18\!\cdots\!11}{21\!\cdots\!59}a^{12}+\frac{32\!\cdots\!43}{21\!\cdots\!59}a^{11}-\frac{19\!\cdots\!65}{21\!\cdots\!59}a^{10}+\frac{25\!\cdots\!93}{21\!\cdots\!59}a^{9}-\frac{13\!\cdots\!77}{21\!\cdots\!59}a^{8}+\frac{14\!\cdots\!34}{21\!\cdots\!59}a^{7}-\frac{64\!\cdots\!24}{21\!\cdots\!59}a^{6}+\frac{60\!\cdots\!61}{21\!\cdots\!59}a^{5}-\frac{20\!\cdots\!41}{21\!\cdots\!59}a^{4}+\frac{15\!\cdots\!43}{21\!\cdots\!59}a^{3}-\frac{37\!\cdots\!80}{21\!\cdots\!59}a^{2}+\frac{16\!\cdots\!00}{21\!\cdots\!59}a-\frac{26\!\cdots\!91}{21\!\cdots\!59}$, $\frac{24\!\cdots\!50}{21\!\cdots\!59}a^{19}-\frac{99\!\cdots\!48}{21\!\cdots\!59}a^{18}+\frac{11\!\cdots\!94}{21\!\cdots\!59}a^{17}-\frac{43\!\cdots\!99}{21\!\cdots\!59}a^{16}+\frac{28\!\cdots\!49}{21\!\cdots\!59}a^{15}-\frac{54\!\cdots\!01}{21\!\cdots\!59}a^{14}+\frac{42\!\cdots\!44}{21\!\cdots\!59}a^{13}-\frac{12\!\cdots\!11}{21\!\cdots\!59}a^{12}+\frac{41\!\cdots\!48}{21\!\cdots\!59}a^{11}+\frac{25\!\cdots\!05}{21\!\cdots\!59}a^{10}+\frac{28\!\cdots\!53}{21\!\cdots\!59}a^{9}+\frac{16\!\cdots\!65}{21\!\cdots\!59}a^{8}+\frac{13\!\cdots\!31}{21\!\cdots\!59}a^{7}-\frac{48\!\cdots\!82}{21\!\cdots\!59}a^{6}+\frac{40\!\cdots\!59}{21\!\cdots\!59}a^{5}-\frac{53\!\cdots\!12}{21\!\cdots\!59}a^{4}+\frac{70\!\cdots\!64}{21\!\cdots\!59}a^{3}-\frac{10\!\cdots\!68}{21\!\cdots\!59}a^{2}+\frac{52\!\cdots\!71}{21\!\cdots\!59}a-\frac{17\!\cdots\!71}{21\!\cdots\!59}$, $\frac{30\!\cdots\!91}{21\!\cdots\!59}a^{19}+\frac{40\!\cdots\!39}{21\!\cdots\!59}a^{18}+\frac{14\!\cdots\!51}{21\!\cdots\!59}a^{17}+\frac{41\!\cdots\!35}{21\!\cdots\!59}a^{16}+\frac{35\!\cdots\!89}{21\!\cdots\!59}a^{15}+\frac{20\!\cdots\!89}{21\!\cdots\!59}a^{14}+\frac{54\!\cdots\!61}{21\!\cdots\!59}a^{13}+\frac{47\!\cdots\!56}{21\!\cdots\!59}a^{12}+\frac{56\!\cdots\!84}{21\!\cdots\!59}a^{11}+\frac{62\!\cdots\!55}{21\!\cdots\!59}a^{10}+\frac{40\!\cdots\!48}{21\!\cdots\!59}a^{9}+\frac{50\!\cdots\!45}{21\!\cdots\!59}a^{8}+\frac{19\!\cdots\!03}{21\!\cdots\!59}a^{7}+\frac{24\!\cdots\!63}{21\!\cdots\!59}a^{6}+\frac{59\!\cdots\!94}{21\!\cdots\!59}a^{5}+\frac{80\!\cdots\!12}{21\!\cdots\!59}a^{4}+\frac{95\!\cdots\!06}{21\!\cdots\!59}a^{3}+\frac{16\!\cdots\!73}{21\!\cdots\!59}a^{2}+\frac{52\!\cdots\!98}{21\!\cdots\!59}a+\frac{15\!\cdots\!79}{21\!\cdots\!59}$, $\frac{57\!\cdots\!57}{21\!\cdots\!59}a^{19}-\frac{16\!\cdots\!78}{21\!\cdots\!59}a^{18}+\frac{29\!\cdots\!92}{21\!\cdots\!59}a^{17}-\frac{80\!\cdots\!74}{21\!\cdots\!59}a^{16}+\frac{74\!\cdots\!47}{21\!\cdots\!59}a^{15}-\frac{18\!\cdots\!18}{21\!\cdots\!59}a^{14}+\frac{11\!\cdots\!14}{21\!\cdots\!59}a^{13}-\frac{25\!\cdots\!56}{21\!\cdots\!59}a^{12}+\frac{11\!\cdots\!37}{21\!\cdots\!59}a^{11}-\frac{23\!\cdots\!98}{21\!\cdots\!59}a^{10}+\frac{80\!\cdots\!27}{21\!\cdots\!59}a^{9}-\frac{16\!\cdots\!49}{21\!\cdots\!59}a^{8}+\frac{37\!\cdots\!58}{21\!\cdots\!59}a^{7}-\frac{78\!\cdots\!02}{21\!\cdots\!59}a^{6}+\frac{12\!\cdots\!68}{21\!\cdots\!59}a^{5}-\frac{25\!\cdots\!45}{21\!\cdots\!59}a^{4}+\frac{22\!\cdots\!72}{21\!\cdots\!59}a^{3}-\frac{42\!\cdots\!18}{21\!\cdots\!59}a^{2}+\frac{18\!\cdots\!07}{21\!\cdots\!59}a-\frac{28\!\cdots\!35}{21\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 7036306.946137199 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 7036306.946137199 \cdot 2}{2\cdot\sqrt{9678054300479022526566826737717}}\cr\approx \mathstrut & 0.216894946240413 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 54*x^18 - 97*x^17 + 1454*x^16 - 2178*x^15 + 24203*x^14 - 29499*x^13 + 271844*x^12 - 266297*x^11 + 2138211*x^10 - 1737644*x^9 + 11918963*x^8 - 8666349*x^7 + 46563112*x^6 - 30553298*x^5 + 119110990*x^4 - 62702972*x^3 + 173029525*x^2 - 53651341*x + 103856419)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 2*x^19 + 54*x^18 - 97*x^17 + 1454*x^16 - 2178*x^15 + 24203*x^14 - 29499*x^13 + 271844*x^12 - 266297*x^11 + 2138211*x^10 - 1737644*x^9 + 11918963*x^8 - 8666349*x^7 + 46563112*x^6 - 30553298*x^5 + 119110990*x^4 - 62702972*x^3 + 173029525*x^2 - 53651341*x + 103856419, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 2*x^19 + 54*x^18 - 97*x^17 + 1454*x^16 - 2178*x^15 + 24203*x^14 - 29499*x^13 + 271844*x^12 - 266297*x^11 + 2138211*x^10 - 1737644*x^9 + 11918963*x^8 - 8666349*x^7 + 46563112*x^6 - 30553298*x^5 + 119110990*x^4 - 62702972*x^3 + 173029525*x^2 - 53651341*x + 103856419);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 2*x^19 + 54*x^18 - 97*x^17 + 1454*x^16 - 2178*x^15 + 24203*x^14 - 29499*x^13 + 271844*x^12 - 266297*x^11 + 2138211*x^10 - 1737644*x^9 + 11918963*x^8 - 8666349*x^7 + 46563112*x^6 - 30553298*x^5 + 119110990*x^4 - 62702972*x^3 + 173029525*x^2 - 53651341*x + 103856419);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{10}\wr C_2$ (as 20T53):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 200
The 65 conjugacy class representatives for $C_{10}\wr C_2$
Character table for $C_{10}\wr C_2$

Intermediate fields

\(\Q(\sqrt{-7}) \), 4.0.33957.1, 10.0.246071287.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 20.0.661024130898095931054356037.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }{,}\,{\href{/padicField/2.5.0.1}{5} }^{2}$ R $20$ R R ${\href{/padicField/13.10.0.1}{10} }^{2}$ ${\href{/padicField/17.10.0.1}{10} }^{2}$ ${\href{/padicField/19.10.0.1}{10} }^{2}$ ${\href{/padicField/23.5.0.1}{5} }^{4}$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }^{2}$ $20$ ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{10}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}$ $20$ ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{10}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.20.10.2$x^{20} + 162 x^{12} - 486 x^{10} + 1458 x^{8} - 19683 x^{2} + 118098$$2$$10$$10$20T1$[\ ]_{2}^{10}$
\(7\) Copy content Toggle raw display 7.20.15.1$x^{20} + 39 x^{16} + 16 x^{15} - 344 x^{12} - 7232 x^{11} + 96 x^{10} + 4344 x^{8} + 131648 x^{7} + 38272 x^{6} + 256 x^{5} + 59536 x^{4} - 212224 x^{3} + 84096 x^{2} - 8704 x + 9328$$4$$5$$15$20T12$[\ ]_{4}^{10}$
\(11\) Copy content Toggle raw display 11.10.5.1$x^{10} - 13310 x^{4} - 1449459$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
11.10.8.1$x^{10} - 77 x^{5} + 242$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$