Properties

Label 20.0.934...000.7
Degree $20$
Signature $[0, 10]$
Discriminant $9.348\times 10^{44}$
Root discriminant \(177.23\)
Ramified primes $2,3,5,11$
Class number $15439376$ (GRH)
Class group [2, 7719688] (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 5*x^18 - 20*x^17 + 910*x^16 + 236*x^15 + 26360*x^14 + 26460*x^13 + 737860*x^12 + 804900*x^11 + 15113210*x^10 + 12037680*x^9 + 241238600*x^8 + 119368900*x^7 + 2830853065*x^6 + 775988298*x^5 + 23347784530*x^4 + 3610501410*x^3 + 122436468035*x^2 + 11447764160*x + 315569310049)
 
gp: K = bnfinit(y^20 + 5*y^18 - 20*y^17 + 910*y^16 + 236*y^15 + 26360*y^14 + 26460*y^13 + 737860*y^12 + 804900*y^11 + 15113210*y^10 + 12037680*y^9 + 241238600*y^8 + 119368900*y^7 + 2830853065*y^6 + 775988298*y^5 + 23347784530*y^4 + 3610501410*y^3 + 122436468035*y^2 + 11447764160*y + 315569310049, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 5*x^18 - 20*x^17 + 910*x^16 + 236*x^15 + 26360*x^14 + 26460*x^13 + 737860*x^12 + 804900*x^11 + 15113210*x^10 + 12037680*x^9 + 241238600*x^8 + 119368900*x^7 + 2830853065*x^6 + 775988298*x^5 + 23347784530*x^4 + 3610501410*x^3 + 122436468035*x^2 + 11447764160*x + 315569310049);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 5*x^18 - 20*x^17 + 910*x^16 + 236*x^15 + 26360*x^14 + 26460*x^13 + 737860*x^12 + 804900*x^11 + 15113210*x^10 + 12037680*x^9 + 241238600*x^8 + 119368900*x^7 + 2830853065*x^6 + 775988298*x^5 + 23347784530*x^4 + 3610501410*x^3 + 122436468035*x^2 + 11447764160*x + 315569310049)
 

\( x^{20} + 5 x^{18} - 20 x^{17} + 910 x^{16} + 236 x^{15} + 26360 x^{14} + 26460 x^{13} + \cdots + 315569310049 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(934801626748320922851562500000000000000000000\) \(\medspace = 2^{20}\cdot 3^{10}\cdot 5^{34}\cdot 11^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(177.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{17/10}11^{1/2}\approx 177.22948397152206$
Ramified primes:   \(2\), \(3\), \(5\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3300=2^{2}\cdot 3\cdot 5^{2}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{3300}(1,·)$, $\chi_{3300}(131,·)$, $\chi_{3300}(769,·)$, $\chi_{3300}(1739,·)$, $\chi_{3300}(2641,·)$, $\chi_{3300}(2771,·)$, $\chi_{3300}(1429,·)$, $\chi_{3300}(791,·)$, $\chi_{3300}(1079,·)$, $\chi_{3300}(2399,·)$, $\chi_{3300}(419,·)$, $\chi_{3300}(1321,·)$, $\chi_{3300}(1451,·)$, $\chi_{3300}(109,·)$, $\chi_{3300}(2749,·)$, $\chi_{3300}(3059,·)$, $\chi_{3300}(2089,·)$, $\chi_{3300}(2111,·)$, $\chi_{3300}(1981,·)$, $\chi_{3300}(661,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{512}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7}a^{7}-\frac{1}{7}a$, $\frac{1}{7}a^{8}-\frac{1}{7}a^{2}$, $\frac{1}{7}a^{9}-\frac{1}{7}a^{3}$, $\frac{1}{525}a^{10}-\frac{1}{15}a^{8}-\frac{2}{105}a^{7}+\frac{1}{5}a^{6}-\frac{1}{75}a^{5}+\frac{46}{105}a^{4}-\frac{4}{15}a^{3}+\frac{1}{15}a^{2}+\frac{2}{105}a-\frac{26}{75}$, $\frac{1}{525}a^{11}-\frac{1}{15}a^{9}-\frac{2}{105}a^{8}+\frac{2}{35}a^{7}-\frac{1}{75}a^{6}+\frac{46}{105}a^{5}-\frac{4}{15}a^{4}+\frac{1}{15}a^{3}+\frac{2}{105}a^{2}-\frac{107}{525}a$, $\frac{1}{525}a^{12}-\frac{2}{105}a^{9}+\frac{1}{105}a^{8}+\frac{6}{175}a^{7}+\frac{46}{105}a^{6}+\frac{4}{15}a^{5}+\frac{2}{5}a^{4}-\frac{11}{35}a^{3}-\frac{82}{525}a^{2}-\frac{1}{21}a-\frac{2}{15}$, $\frac{1}{525}a^{13}+\frac{1}{105}a^{9}-\frac{32}{525}a^{8}-\frac{4}{105}a^{7}+\frac{4}{15}a^{6}+\frac{4}{15}a^{5}+\frac{1}{15}a^{4}+\frac{31}{175}a^{3}+\frac{1}{21}a^{2}+\frac{12}{35}a-\frac{7}{15}$, $\frac{1}{3675}a^{14}-\frac{26}{525}a^{9}+\frac{1}{735}a^{8}-\frac{1}{105}a^{7}+\frac{7}{15}a^{6}-\frac{4}{15}a^{5}+\frac{32}{75}a^{4}-\frac{4}{21}a^{3}+\frac{136}{735}a^{2}+\frac{43}{105}a-\frac{7}{15}$, $\frac{1}{14700}a^{15}+\frac{1}{2100}a^{13}-\frac{1}{2100}a^{12}-\frac{1}{1050}a^{11}-\frac{1}{1050}a^{10}+\frac{1}{196}a^{9}+\frac{113}{2100}a^{8}-\frac{31}{700}a^{7}+\frac{243}{700}a^{6}+\frac{121}{2100}a^{5}+\frac{8}{21}a^{4}+\frac{2363}{7350}a^{3}-\frac{179}{1050}a^{2}+\frac{69}{350}a-\frac{49}{300}$, $\frac{1}{14700}a^{16}-\frac{1}{14700}a^{14}-\frac{1}{2100}a^{13}-\frac{1}{1050}a^{12}-\frac{1}{1050}a^{11}-\frac{3}{4900}a^{10}+\frac{1}{100}a^{9}+\frac{149}{14700}a^{8}-\frac{11}{2100}a^{7}-\frac{333}{700}a^{6}-\frac{8}{175}a^{5}+\frac{377}{2450}a^{4}+\frac{23}{150}a^{3}-\frac{1691}{7350}a^{2}+\frac{817}{2100}a-\frac{2}{75}$, $\frac{1}{632100}a^{17}-\frac{1}{105350}a^{16}-\frac{1}{210700}a^{15}+\frac{17}{210700}a^{14}-\frac{29}{45150}a^{13}+\frac{1}{1075}a^{12}+\frac{523}{632100}a^{11}+\frac{341}{632100}a^{10}-\frac{6529}{210700}a^{9}+\frac{13049}{210700}a^{8}+\frac{743}{30100}a^{7}-\frac{31}{129}a^{6}+\frac{30004}{158025}a^{5}+\frac{14459}{316050}a^{4}-\frac{6143}{105350}a^{3}+\frac{2503}{25284}a^{2}-\frac{11533}{45150}a-\frac{251}{1290}$, $\frac{1}{22\!\cdots\!00}a^{18}-\frac{6591794967976}{18\!\cdots\!75}a^{17}+\frac{8322586924292}{37\!\cdots\!75}a^{16}-\frac{31\!\cdots\!49}{22\!\cdots\!00}a^{15}+\frac{37\!\cdots\!97}{22\!\cdots\!00}a^{14}+\frac{179510164531729}{90\!\cdots\!80}a^{13}-\frac{67\!\cdots\!57}{22\!\cdots\!00}a^{12}+\frac{16\!\cdots\!33}{22\!\cdots\!00}a^{11}-\frac{20\!\cdots\!73}{26\!\cdots\!25}a^{10}-\frac{34\!\cdots\!06}{55\!\cdots\!25}a^{9}+\frac{10\!\cdots\!59}{36\!\cdots\!50}a^{8}-\frac{20\!\cdots\!17}{31\!\cdots\!00}a^{7}+\frac{10\!\cdots\!83}{22\!\cdots\!00}a^{6}+\frac{25\!\cdots\!79}{18\!\cdots\!75}a^{5}+\frac{42\!\cdots\!29}{26\!\cdots\!25}a^{4}+\frac{10\!\cdots\!07}{73\!\cdots\!00}a^{3}-\frac{52\!\cdots\!39}{11\!\cdots\!50}a^{2}-\frac{46\!\cdots\!09}{21\!\cdots\!20}a-\frac{21\!\cdots\!33}{45\!\cdots\!90}$, $\frac{1}{88\!\cdots\!00}a^{19}-\frac{10\!\cdots\!33}{14\!\cdots\!50}a^{18}-\frac{58\!\cdots\!79}{12\!\cdots\!00}a^{17}-\frac{20\!\cdots\!53}{22\!\cdots\!25}a^{16}+\frac{66\!\cdots\!42}{22\!\cdots\!25}a^{15}+\frac{12\!\cdots\!79}{98\!\cdots\!00}a^{14}-\frac{14\!\cdots\!57}{73\!\cdots\!75}a^{13}-\frac{60\!\cdots\!61}{88\!\cdots\!00}a^{12}+\frac{57\!\cdots\!01}{84\!\cdots\!20}a^{11}+\frac{24\!\cdots\!71}{73\!\cdots\!75}a^{10}+\frac{68\!\cdots\!92}{29\!\cdots\!07}a^{9}-\frac{29\!\cdots\!09}{42\!\cdots\!00}a^{8}-\frac{31\!\cdots\!89}{59\!\cdots\!40}a^{7}+\frac{67\!\cdots\!79}{29\!\cdots\!00}a^{6}-\frac{68\!\cdots\!73}{63\!\cdots\!50}a^{5}-\frac{27\!\cdots\!83}{88\!\cdots\!00}a^{4}-\frac{18\!\cdots\!14}{44\!\cdots\!05}a^{3}-\frac{26\!\cdots\!39}{63\!\cdots\!50}a^{2}-\frac{34\!\cdots\!99}{25\!\cdots\!00}a-\frac{13\!\cdots\!08}{64\!\cdots\!75}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $7$

Class group and class number

$C_{2}\times C_{7719688}$, which has order $15439376$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{58\!\cdots\!84}{10\!\cdots\!25}a^{19}-\frac{16\!\cdots\!78}{10\!\cdots\!25}a^{18}+\frac{16\!\cdots\!36}{10\!\cdots\!25}a^{17}-\frac{15\!\cdots\!47}{10\!\cdots\!25}a^{16}+\frac{55\!\cdots\!88}{10\!\cdots\!25}a^{15}-\frac{12\!\cdots\!92}{10\!\cdots\!25}a^{14}+\frac{13\!\cdots\!52}{10\!\cdots\!25}a^{13}-\frac{47\!\cdots\!77}{21\!\cdots\!05}a^{12}+\frac{35\!\cdots\!44}{10\!\cdots\!25}a^{11}-\frac{60\!\cdots\!61}{10\!\cdots\!25}a^{10}+\frac{13\!\cdots\!38}{21\!\cdots\!05}a^{9}-\frac{15\!\cdots\!06}{10\!\cdots\!25}a^{8}+\frac{10\!\cdots\!64}{10\!\cdots\!25}a^{7}-\frac{26\!\cdots\!31}{10\!\cdots\!25}a^{6}+\frac{10\!\cdots\!74}{10\!\cdots\!25}a^{5}-\frac{31\!\cdots\!27}{10\!\cdots\!25}a^{4}+\frac{80\!\cdots\!08}{10\!\cdots\!25}a^{3}-\frac{22\!\cdots\!79}{10\!\cdots\!25}a^{2}+\frac{22\!\cdots\!24}{86\!\cdots\!49}a-\frac{34\!\cdots\!49}{43\!\cdots\!45}$, $\frac{21\!\cdots\!12}{73\!\cdots\!75}a^{19}+\frac{43\!\cdots\!36}{14\!\cdots\!35}a^{18}-\frac{49\!\cdots\!42}{15\!\cdots\!75}a^{17}-\frac{69\!\cdots\!41}{14\!\cdots\!35}a^{16}+\frac{14\!\cdots\!28}{73\!\cdots\!75}a^{15}+\frac{27\!\cdots\!22}{10\!\cdots\!25}a^{14}+\frac{51\!\cdots\!04}{73\!\cdots\!75}a^{13}+\frac{54\!\cdots\!24}{73\!\cdots\!75}a^{12}+\frac{37\!\cdots\!12}{15\!\cdots\!75}a^{11}+\frac{14\!\cdots\!96}{73\!\cdots\!75}a^{10}+\frac{74\!\cdots\!46}{14\!\cdots\!35}a^{9}+\frac{38\!\cdots\!61}{10\!\cdots\!25}a^{8}+\frac{10\!\cdots\!36}{14\!\cdots\!35}a^{7}+\frac{37\!\cdots\!94}{73\!\cdots\!75}a^{6}+\frac{27\!\cdots\!74}{43\!\cdots\!45}a^{5}+\frac{38\!\cdots\!79}{73\!\cdots\!75}a^{4}+\frac{29\!\cdots\!62}{73\!\cdots\!75}a^{3}+\frac{35\!\cdots\!77}{10\!\cdots\!25}a^{2}+\frac{16\!\cdots\!56}{15\!\cdots\!75}a+\frac{24\!\cdots\!02}{21\!\cdots\!25}$, $\frac{39\!\cdots\!28}{73\!\cdots\!75}a^{19}+\frac{50\!\cdots\!66}{29\!\cdots\!07}a^{18}-\frac{42\!\cdots\!94}{10\!\cdots\!25}a^{17}-\frac{96\!\cdots\!73}{73\!\cdots\!75}a^{16}+\frac{36\!\cdots\!48}{73\!\cdots\!75}a^{15}+\frac{19\!\cdots\!38}{10\!\cdots\!25}a^{14}+\frac{61\!\cdots\!76}{73\!\cdots\!75}a^{13}+\frac{42\!\cdots\!69}{73\!\cdots\!75}a^{12}+\frac{69\!\cdots\!16}{21\!\cdots\!05}a^{11}+\frac{11\!\cdots\!67}{73\!\cdots\!75}a^{10}+\frac{87\!\cdots\!56}{14\!\cdots\!35}a^{9}+\frac{70\!\cdots\!18}{24\!\cdots\!75}a^{8}+\frac{12\!\cdots\!96}{14\!\cdots\!35}a^{7}+\frac{30\!\cdots\!03}{73\!\cdots\!75}a^{6}+\frac{83\!\cdots\!04}{10\!\cdots\!25}a^{5}+\frac{34\!\cdots\!56}{73\!\cdots\!75}a^{4}+\frac{34\!\cdots\!18}{73\!\cdots\!75}a^{3}+\frac{35\!\cdots\!02}{10\!\cdots\!25}a^{2}+\frac{18\!\cdots\!08}{15\!\cdots\!75}a+\frac{29\!\cdots\!58}{21\!\cdots\!25}$, $\frac{18\!\cdots\!16}{73\!\cdots\!75}a^{19}-\frac{17\!\cdots\!06}{14\!\cdots\!35}a^{18}-\frac{15\!\cdots\!84}{42\!\cdots\!01}a^{17}+\frac{25\!\cdots\!32}{73\!\cdots\!75}a^{16}+\frac{43\!\cdots\!44}{14\!\cdots\!35}a^{15}-\frac{88\!\cdots\!84}{10\!\cdots\!25}a^{14}+\frac{94\!\cdots\!72}{73\!\cdots\!75}a^{13}-\frac{24\!\cdots\!31}{14\!\cdots\!35}a^{12}+\frac{88\!\cdots\!96}{10\!\cdots\!25}a^{11}-\frac{27\!\cdots\!29}{73\!\cdots\!75}a^{10}+\frac{24\!\cdots\!22}{29\!\cdots\!07}a^{9}-\frac{83\!\cdots\!87}{10\!\cdots\!25}a^{8}+\frac{52\!\cdots\!72}{29\!\cdots\!07}a^{7}-\frac{64\!\cdots\!91}{73\!\cdots\!75}a^{6}+\frac{16\!\cdots\!74}{10\!\cdots\!25}a^{5}-\frac{38\!\cdots\!23}{73\!\cdots\!75}a^{4}+\frac{55\!\cdots\!56}{73\!\cdots\!75}a^{3}-\frac{45\!\cdots\!55}{42\!\cdots\!01}a^{2}+\frac{17\!\cdots\!52}{15\!\cdots\!75}a+\frac{32\!\cdots\!31}{21\!\cdots\!25}$, $\frac{14\!\cdots\!33}{73\!\cdots\!75}a^{19}-\frac{58\!\cdots\!43}{29\!\cdots\!00}a^{18}+\frac{58\!\cdots\!53}{12\!\cdots\!00}a^{17}-\frac{25\!\cdots\!49}{88\!\cdots\!00}a^{16}+\frac{15\!\cdots\!43}{88\!\cdots\!00}a^{15}-\frac{73\!\cdots\!53}{42\!\cdots\!00}a^{14}+\frac{23\!\cdots\!13}{29\!\cdots\!00}a^{13}-\frac{54\!\cdots\!99}{14\!\cdots\!50}a^{12}+\frac{42\!\cdots\!02}{31\!\cdots\!75}a^{11}-\frac{19\!\cdots\!11}{22\!\cdots\!25}a^{10}+\frac{11\!\cdots\!71}{35\!\cdots\!84}a^{9}-\frac{23\!\cdots\!57}{12\!\cdots\!00}a^{8}+\frac{23\!\cdots\!51}{44\!\cdots\!50}a^{7}-\frac{24\!\cdots\!83}{88\!\cdots\!00}a^{6}+\frac{17\!\cdots\!51}{25\!\cdots\!60}a^{5}-\frac{64\!\cdots\!22}{22\!\cdots\!25}a^{4}+\frac{49\!\cdots\!93}{88\!\cdots\!00}a^{3}-\frac{23\!\cdots\!23}{12\!\cdots\!00}a^{2}+\frac{13\!\cdots\!32}{64\!\cdots\!75}a-\frac{12\!\cdots\!53}{25\!\cdots\!00}$, $\frac{26\!\cdots\!67}{44\!\cdots\!50}a^{19}+\frac{28\!\cdots\!51}{14\!\cdots\!50}a^{18}-\frac{29\!\cdots\!37}{63\!\cdots\!50}a^{17}-\frac{28\!\cdots\!59}{29\!\cdots\!00}a^{16}+\frac{64\!\cdots\!79}{11\!\cdots\!28}a^{15}+\frac{82\!\cdots\!53}{42\!\cdots\!00}a^{14}+\frac{81\!\cdots\!57}{88\!\cdots\!10}a^{13}+\frac{16\!\cdots\!91}{29\!\cdots\!00}a^{12}+\frac{22\!\cdots\!93}{63\!\cdots\!15}a^{11}+\frac{13\!\cdots\!11}{88\!\cdots\!00}a^{10}+\frac{18\!\cdots\!31}{29\!\cdots\!70}a^{9}+\frac{16\!\cdots\!21}{63\!\cdots\!50}a^{8}+\frac{46\!\cdots\!66}{51\!\cdots\!75}a^{7}+\frac{54\!\cdots\!67}{14\!\cdots\!50}a^{6}+\frac{99\!\cdots\!99}{12\!\cdots\!00}a^{5}+\frac{83\!\cdots\!77}{22\!\cdots\!25}a^{4}+\frac{69\!\cdots\!01}{14\!\cdots\!50}a^{3}+\frac{79\!\cdots\!77}{31\!\cdots\!75}a^{2}+\frac{75\!\cdots\!49}{60\!\cdots\!00}a+\frac{82\!\cdots\!77}{86\!\cdots\!00}$, $\frac{26\!\cdots\!22}{63\!\cdots\!25}a^{19}+\frac{29\!\cdots\!89}{50\!\cdots\!20}a^{18}-\frac{15\!\cdots\!89}{90\!\cdots\!75}a^{17}-\frac{30\!\cdots\!59}{50\!\cdots\!20}a^{16}+\frac{10\!\cdots\!87}{42\!\cdots\!50}a^{15}+\frac{15\!\cdots\!44}{30\!\cdots\!25}a^{14}+\frac{23\!\cdots\!71}{25\!\cdots\!00}a^{13}+\frac{91\!\cdots\!69}{63\!\cdots\!25}a^{12}+\frac{13\!\cdots\!91}{36\!\cdots\!00}a^{11}+\frac{31\!\cdots\!43}{84\!\cdots\!00}a^{10}+\frac{94\!\cdots\!01}{12\!\cdots\!05}a^{9}+\frac{64\!\cdots\!41}{90\!\cdots\!75}a^{8}+\frac{11\!\cdots\!73}{11\!\cdots\!40}a^{7}+\frac{25\!\cdots\!31}{25\!\cdots\!00}a^{6}+\frac{52\!\cdots\!19}{72\!\cdots\!60}a^{5}+\frac{43\!\cdots\!41}{42\!\cdots\!50}a^{4}+\frac{70\!\cdots\!13}{25\!\cdots\!00}a^{3}+\frac{12\!\cdots\!99}{18\!\cdots\!50}a^{2}+\frac{27\!\cdots\!11}{12\!\cdots\!25}a+\frac{45\!\cdots\!91}{24\!\cdots\!00}$, $\frac{19\!\cdots\!19}{29\!\cdots\!00}a^{19}-\frac{78\!\cdots\!51}{88\!\cdots\!00}a^{18}-\frac{21\!\cdots\!91}{12\!\cdots\!60}a^{17}-\frac{44\!\cdots\!77}{29\!\cdots\!00}a^{16}+\frac{45\!\cdots\!97}{73\!\cdots\!75}a^{15}-\frac{22\!\cdots\!61}{42\!\cdots\!00}a^{14}+\frac{83\!\cdots\!93}{68\!\cdots\!00}a^{13}-\frac{54\!\cdots\!39}{88\!\cdots\!00}a^{12}+\frac{53\!\cdots\!38}{15\!\cdots\!75}a^{11}-\frac{51\!\cdots\!29}{29\!\cdots\!00}a^{10}+\frac{27\!\cdots\!79}{44\!\cdots\!05}a^{9}-\frac{29\!\cdots\!33}{42\!\cdots\!00}a^{8}+\frac{13\!\cdots\!13}{14\!\cdots\!50}a^{7}-\frac{58\!\cdots\!01}{44\!\cdots\!50}a^{6}+\frac{11\!\cdots\!69}{12\!\cdots\!60}a^{5}-\frac{51\!\cdots\!27}{29\!\cdots\!00}a^{4}+\frac{11\!\cdots\!99}{17\!\cdots\!20}a^{3}-\frac{12\!\cdots\!98}{10\!\cdots\!25}a^{2}+\frac{12\!\cdots\!23}{60\!\cdots\!00}a-\frac{46\!\cdots\!13}{86\!\cdots\!00}$, $\frac{46\!\cdots\!39}{29\!\cdots\!00}a^{19}+\frac{10\!\cdots\!37}{22\!\cdots\!25}a^{18}+\frac{16\!\cdots\!09}{12\!\cdots\!03}a^{17}-\frac{25\!\cdots\!79}{29\!\cdots\!00}a^{16}+\frac{87\!\cdots\!63}{88\!\cdots\!00}a^{15}+\frac{16\!\cdots\!29}{42\!\cdots\!00}a^{14}+\frac{29\!\cdots\!71}{59\!\cdots\!40}a^{13}+\frac{10\!\cdots\!87}{88\!\cdots\!00}a^{12}+\frac{34\!\cdots\!69}{31\!\cdots\!75}a^{11}+\frac{18\!\cdots\!13}{73\!\cdots\!75}a^{10}+\frac{96\!\cdots\!23}{44\!\cdots\!05}a^{9}+\frac{42\!\cdots\!81}{12\!\cdots\!00}a^{8}+\frac{84\!\cdots\!47}{29\!\cdots\!00}a^{7}+\frac{28\!\cdots\!73}{14\!\cdots\!50}a^{6}+\frac{31\!\cdots\!43}{12\!\cdots\!30}a^{5}-\frac{26\!\cdots\!77}{29\!\cdots\!00}a^{4}+\frac{56\!\cdots\!19}{44\!\cdots\!50}a^{3}-\frac{27\!\cdots\!87}{12\!\cdots\!00}a^{2}+\frac{84\!\cdots\!61}{30\!\cdots\!50}a-\frac{15\!\cdots\!69}{12\!\cdots\!50}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 180801817.57689384 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 180801817.57689384 \cdot 15439376}{2\cdot\sqrt{934801626748320922851562500000000000000000000}}\cr\approx \mathstrut & 4.37765461656408 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 + 5*x^18 - 20*x^17 + 910*x^16 + 236*x^15 + 26360*x^14 + 26460*x^13 + 737860*x^12 + 804900*x^11 + 15113210*x^10 + 12037680*x^9 + 241238600*x^8 + 119368900*x^7 + 2830853065*x^6 + 775988298*x^5 + 23347784530*x^4 + 3610501410*x^3 + 122436468035*x^2 + 11447764160*x + 315569310049)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 + 5*x^18 - 20*x^17 + 910*x^16 + 236*x^15 + 26360*x^14 + 26460*x^13 + 737860*x^12 + 804900*x^11 + 15113210*x^10 + 12037680*x^9 + 241238600*x^8 + 119368900*x^7 + 2830853065*x^6 + 775988298*x^5 + 23347784530*x^4 + 3610501410*x^3 + 122436468035*x^2 + 11447764160*x + 315569310049, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 + 5*x^18 - 20*x^17 + 910*x^16 + 236*x^15 + 26360*x^14 + 26460*x^13 + 737860*x^12 + 804900*x^11 + 15113210*x^10 + 12037680*x^9 + 241238600*x^8 + 119368900*x^7 + 2830853065*x^6 + 775988298*x^5 + 23347784530*x^4 + 3610501410*x^3 + 122436468035*x^2 + 11447764160*x + 315569310049);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 5*x^18 - 20*x^17 + 910*x^16 + 236*x^15 + 26360*x^14 + 26460*x^13 + 737860*x^12 + 804900*x^11 + 15113210*x^10 + 12037680*x^9 + 241238600*x^8 + 119368900*x^7 + 2830853065*x^6 + 775988298*x^5 + 23347784530*x^4 + 3610501410*x^3 + 122436468035*x^2 + 11447764160*x + 315569310049);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{10}$ (as 20T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-33}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{15}, \sqrt{-33})\), 5.5.390625.1, 10.0.6114905156250000000000.1, 10.10.189843750000000000.1, 10.0.122872161865234375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.1.0.1}{1} }^{20}$ R ${\href{/padicField/13.10.0.1}{10} }^{2}$ ${\href{/padicField/17.5.0.1}{5} }^{4}$ ${\href{/padicField/19.10.0.1}{10} }^{2}$ ${\href{/padicField/23.10.0.1}{10} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ ${\href{/padicField/43.1.0.1}{1} }^{20}$ ${\href{/padicField/47.10.0.1}{10} }^{2}$ ${\href{/padicField/53.10.0.1}{10} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.10.10.7$x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 592 x^{5} + 656 x^{4} + 384 x^{3} - 112 x^{2} - 352 x - 1248$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.7$x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 592 x^{5} + 656 x^{4} + 384 x^{3} - 112 x^{2} - 352 x - 1248$$2$$5$$10$$C_{10}$$[2]^{5}$
\(3\) Copy content Toggle raw display 3.20.10.1$x^{20} + 30 x^{18} + 409 x^{16} + 4 x^{15} + 3244 x^{14} - 60 x^{13} + 16162 x^{12} - 1250 x^{11} + 53008 x^{10} - 7102 x^{9} + 121150 x^{8} - 12140 x^{7} + 219264 x^{6} + 5736 x^{5} + 257465 x^{4} + 35250 x^{3} + 250183 x^{2} + 51502 x + 77812$$2$$10$$10$20T3$[\ ]_{2}^{10}$
\(5\) Copy content Toggle raw display Deg $20$$10$$2$$34$
\(11\) Copy content Toggle raw display 11.10.5.2$x^{10} + 55 x^{8} + 20 x^{7} + 1210 x^{6} - 202 x^{5} + 13410 x^{4} - 14080 x^{3} + 75585 x^{2} - 68970 x + 171252$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
11.10.5.2$x^{10} + 55 x^{8} + 20 x^{7} + 1210 x^{6} - 202 x^{5} + 13410 x^{4} - 14080 x^{3} + 75585 x^{2} - 68970 x + 171252$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$