Properties

Label 20.0.734...192.2
Degree $20$
Signature $[0, 10]$
Discriminant $7.345\times 10^{34}$
Root discriminant \(55.37\)
Ramified primes $2,3,11$
Class number not computed
Class group not computed
Galois group $C_{10}\wr C_2$ (as 20T53)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 66*x^18 - 144*x^17 + 2429*x^16 - 4256*x^15 + 66002*x^14 - 78616*x^13 + 1344183*x^12 - 942756*x^11 + 21478084*x^10 - 3538344*x^9 + 277175770*x^8 + 68785752*x^7 + 2845773570*x^6 + 1894261020*x^5 + 22516220277*x^4 + 18926594408*x^3 + 116894317946*x^2 + 100071545420*x + 314911118323)
 
gp: K = bnfinit(y^20 - 4*y^19 + 66*y^18 - 144*y^17 + 2429*y^16 - 4256*y^15 + 66002*y^14 - 78616*y^13 + 1344183*y^12 - 942756*y^11 + 21478084*y^10 - 3538344*y^9 + 277175770*y^8 + 68785752*y^7 + 2845773570*y^6 + 1894261020*y^5 + 22516220277*y^4 + 18926594408*y^3 + 116894317946*y^2 + 100071545420*y + 314911118323, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 4*x^19 + 66*x^18 - 144*x^17 + 2429*x^16 - 4256*x^15 + 66002*x^14 - 78616*x^13 + 1344183*x^12 - 942756*x^11 + 21478084*x^10 - 3538344*x^9 + 277175770*x^8 + 68785752*x^7 + 2845773570*x^6 + 1894261020*x^5 + 22516220277*x^4 + 18926594408*x^3 + 116894317946*x^2 + 100071545420*x + 314911118323);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 4*x^19 + 66*x^18 - 144*x^17 + 2429*x^16 - 4256*x^15 + 66002*x^14 - 78616*x^13 + 1344183*x^12 - 942756*x^11 + 21478084*x^10 - 3538344*x^9 + 277175770*x^8 + 68785752*x^7 + 2845773570*x^6 + 1894261020*x^5 + 22516220277*x^4 + 18926594408*x^3 + 116894317946*x^2 + 100071545420*x + 314911118323)
 

\( x^{20} - 4 x^{19} + 66 x^{18} - 144 x^{17} + 2429 x^{16} - 4256 x^{15} + 66002 x^{14} + \cdots + 314911118323 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(73445842291921443780364922039304192\) \(\medspace = 2^{55}\cdot 3^{10}\cdot 11^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(55.37\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}3^{1/2}11^{9/10}\approx 100.84317994603103$
Ramified primes:   \(2\), \(3\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{22}) \)
$\card{ \Aut(K/\Q) }$:  $10$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19}a^{18}-\frac{4}{19}a^{16}-\frac{8}{19}a^{15}-\frac{2}{19}a^{14}+\frac{1}{19}a^{13}+\frac{7}{19}a^{12}+\frac{2}{19}a^{11}+\frac{2}{19}a^{10}+\frac{6}{19}a^{9}+\frac{7}{19}a^{8}-\frac{5}{19}a^{7}-\frac{8}{19}a^{6}+\frac{9}{19}a^{5}-\frac{6}{19}a^{4}+\frac{4}{19}a^{2}-\frac{7}{19}a+\frac{5}{19}$, $\frac{1}{10\!\cdots\!59}a^{19}+\frac{10\!\cdots\!90}{10\!\cdots\!59}a^{18}-\frac{17\!\cdots\!93}{10\!\cdots\!59}a^{17}+\frac{10\!\cdots\!44}{10\!\cdots\!59}a^{16}+\frac{29\!\cdots\!77}{10\!\cdots\!59}a^{15}+\frac{12\!\cdots\!54}{10\!\cdots\!59}a^{14}+\frac{25\!\cdots\!36}{10\!\cdots\!59}a^{13}-\frac{53\!\cdots\!43}{10\!\cdots\!59}a^{12}+\frac{44\!\cdots\!49}{10\!\cdots\!59}a^{11}+\frac{28\!\cdots\!49}{10\!\cdots\!59}a^{10}+\frac{38\!\cdots\!55}{10\!\cdots\!59}a^{9}+\frac{74\!\cdots\!04}{10\!\cdots\!59}a^{8}+\frac{49\!\cdots\!24}{10\!\cdots\!59}a^{7}+\frac{29\!\cdots\!90}{10\!\cdots\!59}a^{6}-\frac{15\!\cdots\!41}{10\!\cdots\!59}a^{5}+\frac{84\!\cdots\!66}{11\!\cdots\!47}a^{4}-\frac{69\!\cdots\!87}{10\!\cdots\!59}a^{3}+\frac{36\!\cdots\!83}{10\!\cdots\!59}a^{2}+\frac{11\!\cdots\!03}{10\!\cdots\!59}a-\frac{67\!\cdots\!39}{10\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 66*x^18 - 144*x^17 + 2429*x^16 - 4256*x^15 + 66002*x^14 - 78616*x^13 + 1344183*x^12 - 942756*x^11 + 21478084*x^10 - 3538344*x^9 + 277175770*x^8 + 68785752*x^7 + 2845773570*x^6 + 1894261020*x^5 + 22516220277*x^4 + 18926594408*x^3 + 116894317946*x^2 + 100071545420*x + 314911118323)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 4*x^19 + 66*x^18 - 144*x^17 + 2429*x^16 - 4256*x^15 + 66002*x^14 - 78616*x^13 + 1344183*x^12 - 942756*x^11 + 21478084*x^10 - 3538344*x^9 + 277175770*x^8 + 68785752*x^7 + 2845773570*x^6 + 1894261020*x^5 + 22516220277*x^4 + 18926594408*x^3 + 116894317946*x^2 + 100071545420*x + 314911118323, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 4*x^19 + 66*x^18 - 144*x^17 + 2429*x^16 - 4256*x^15 + 66002*x^14 - 78616*x^13 + 1344183*x^12 - 942756*x^11 + 21478084*x^10 - 3538344*x^9 + 277175770*x^8 + 68785752*x^7 + 2845773570*x^6 + 1894261020*x^5 + 22516220277*x^4 + 18926594408*x^3 + 116894317946*x^2 + 100071545420*x + 314911118323);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 4*x^19 + 66*x^18 - 144*x^17 + 2429*x^16 - 4256*x^15 + 66002*x^14 - 78616*x^13 + 1344183*x^12 - 942756*x^11 + 21478084*x^10 - 3538344*x^9 + 277175770*x^8 + 68785752*x^7 + 2845773570*x^6 + 1894261020*x^5 + 22516220277*x^4 + 18926594408*x^3 + 116894317946*x^2 + 100071545420*x + 314911118323);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{10}\wr C_2$ (as 20T53):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 200
The 65 conjugacy class representatives for $C_{10}\wr C_2$
Character table for $C_{10}\wr C_2$

Intermediate fields

\(\Q(\sqrt{-2}) \), 4.0.202752.6, 10.0.479756288.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 20.0.5016449852600330836716407488512.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $20$ ${\href{/padicField/7.10.0.1}{10} }^{2}$ R ${\href{/padicField/13.10.0.1}{10} }^{2}$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}$ ${\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{5}$ ${\href{/padicField/23.4.0.1}{4} }^{5}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ $20$ $20$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }^{2}$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}$ $20$ $20$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$4$$5$$55$
\(3\) Copy content Toggle raw display 3.10.5.1$x^{10} + 162 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3.10.5.1$x^{10} + 162 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(11\) Copy content Toggle raw display 11.10.5.1$x^{10} - 13310 x^{4} - 1449459$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
11.10.8.3$x^{10} - 110 x^{5} - 16819$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$