Properties

Label 20.0.294...176.1
Degree $20$
Signature $[0, 10]$
Discriminant $2.948\times 10^{21}$
Root discriminant \(11.84\)
Ramified primes $2,41,4549$
Class number $1$
Class group trivial
Galois group $C_2^{10}.S_5$ (as 20T799)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 6*x^18 + 18*x^16 + 39*x^14 + 65*x^12 + 73*x^10 + 45*x^8 + 4*x^6 - 11*x^4 - 2*x^2 + 1)
 
gp: K = bnfinit(y^20 + 6*y^18 + 18*y^16 + 39*y^14 + 65*y^12 + 73*y^10 + 45*y^8 + 4*y^6 - 11*y^4 - 2*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 6*x^18 + 18*x^16 + 39*x^14 + 65*x^12 + 73*x^10 + 45*x^8 + 4*x^6 - 11*x^4 - 2*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 6*x^18 + 18*x^16 + 39*x^14 + 65*x^12 + 73*x^10 + 45*x^8 + 4*x^6 - 11*x^4 - 2*x^2 + 1)
 

\( x^{20} + 6x^{18} + 18x^{16} + 39x^{14} + 65x^{12} + 73x^{10} + 45x^{8} + 4x^{6} - 11x^{4} - 2x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2948433986992424882176\) \(\medspace = 2^{12}\cdot 41^{2}\cdot 4549^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{7/4}41^{1/2}4549^{1/2}\approx 1452.6212370873382$
Ramified primes:   \(2\), \(41\), \(4549\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{3358}a^{18}-\frac{17}{73}a^{16}-\frac{1}{2}a^{15}+\frac{41}{3358}a^{14}-\frac{8}{73}a^{12}-\frac{209}{1679}a^{10}+\frac{373}{3358}a^{8}+\frac{1625}{3358}a^{6}-\frac{1}{2}a^{5}+\frac{581}{3358}a^{4}-\frac{1}{2}a^{3}-\frac{1151}{3358}a^{2}+\frac{163}{1679}$, $\frac{1}{3358}a^{19}-\frac{17}{73}a^{17}+\frac{41}{3358}a^{15}+\frac{57}{146}a^{13}-\frac{1}{2}a^{12}-\frac{209}{1679}a^{11}+\frac{373}{3358}a^{9}+\frac{1625}{3358}a^{7}+\frac{581}{3358}a^{5}+\frac{264}{1679}a^{3}-\frac{1}{2}a^{2}-\frac{1353}{3358}a-\frac{1}{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1157}{1679}a^{19}+\frac{301}{73}a^{17}+\frac{20573}{1679}a^{15}+\frac{1928}{73}a^{13}+\frac{73802}{1679}a^{11}+\frac{82329}{1679}a^{9}+\frac{50015}{1679}a^{7}+\frac{5654}{1679}a^{5}-\frac{10334}{1679}a^{3}-\frac{2272}{1679}a$, $\frac{1632}{1679}a^{19}+\frac{430}{73}a^{17}+\frac{29974}{1679}a^{15}+\frac{2869}{73}a^{13}+\frac{111991}{1679}a^{11}+\frac{130221}{1679}a^{9}+\frac{89846}{1679}a^{7}+\frac{23063}{1679}a^{5}-\frac{9705}{1679}a^{3}-\frac{1890}{1679}a$, $\frac{1224}{1679}a^{18}+\frac{286}{73}a^{16}+\frac{18283}{1679}a^{14}+\frac{1659}{73}a^{12}+\frac{60907}{1679}a^{10}+\frac{61987}{1679}a^{8}+\frac{32965}{1679}a^{6}+\frac{927}{1679}a^{4}-\frac{6859}{1679}a^{2}-\frac{578}{1679}$, $a^{19}+6a^{17}+18a^{15}+39a^{13}+65a^{11}+73a^{9}+45a^{7}+4a^{5}-11a^{3}-2a$, $\frac{578}{1679}a^{19}+\frac{204}{73}a^{17}+\frac{16982}{1679}a^{15}+\frac{1775}{73}a^{13}+\frac{75727}{1679}a^{11}+\frac{103101}{1679}a^{9}+\frac{87997}{1679}a^{7}+\frac{35277}{1679}a^{5}-\frac{5431}{1679}a^{3}-\frac{6336}{1679}a$, $\frac{641}{1679}a^{19}+\frac{853}{1679}a^{18}+\frac{179}{73}a^{17}+\frac{469}{146}a^{16}+\frac{12849}{1679}a^{15}+\frac{16504}{1679}a^{14}+\frac{2483}{146}a^{13}+\frac{3145}{146}a^{12}+\frac{49393}{1679}a^{11}+\frac{61517}{1679}a^{10}+\frac{59440}{1679}a^{9}+\frac{71356}{1679}a^{8}+\frac{42620}{1679}a^{7}+\frac{94245}{3358}a^{6}+\frac{13115}{1679}a^{5}+\frac{19045}{3358}a^{4}-\frac{3099}{3358}a^{3}-\frac{14287}{3358}a^{2}-\frac{139}{3358}a-\frac{2951}{3358}$, $\frac{577}{1679}a^{19}-\frac{187}{3358}a^{18}+\frac{257}{146}a^{17}-\frac{33}{73}a^{16}+\frac{15413}{3358}a^{15}-\frac{2994}{1679}a^{14}+\frac{1319}{146}a^{13}-\frac{329}{73}a^{12}+\frac{22417}{1679}a^{11}-\frac{14645}{1679}a^{10}+\frac{18778}{1679}a^{9}-\frac{42887}{3358}a^{8}+\frac{6523}{3358}a^{7}-\frac{41951}{3358}a^{6}-\frac{7279}{1679}a^{5}-\frac{11509}{1679}a^{4}-\frac{2601}{1679}a^{3}-\frac{2356}{1679}a^{2}+\frac{5145}{3358}a+\frac{1420}{1679}$, $\frac{1147}{1679}a^{19}+\frac{633}{3358}a^{18}+\frac{625}{146}a^{17}+\frac{159}{146}a^{16}+\frac{45363}{3358}a^{15}+\frac{5421}{1679}a^{14}+\frac{2234}{73}a^{13}+\frac{1041}{146}a^{12}+\frac{89735}{1679}a^{11}+\frac{20492}{1679}a^{10}+\frac{110500}{1679}a^{9}+\frac{48061}{3358}a^{8}+\frac{169949}{3358}a^{7}+\frac{18168}{1679}a^{6}+\frac{30066}{1679}a^{5}+\frac{15183}{3358}a^{4}-\frac{9401}{3358}a^{3}+\frac{103}{3358}a^{2}-\frac{5532}{1679}a-\frac{3517}{3358}$, $\frac{1222}{1679}a^{19}-\frac{187}{3358}a^{18}+\frac{635}{146}a^{17}-\frac{33}{73}a^{16}+\frac{44797}{3358}a^{15}-\frac{2994}{1679}a^{14}+\frac{4331}{146}a^{13}-\frac{329}{73}a^{12}+\frac{85249}{1679}a^{11}-\frac{14645}{1679}a^{10}+\frac{101537}{1679}a^{9}-\frac{42887}{3358}a^{8}+\frac{148417}{3358}a^{7}-\frac{41951}{3358}a^{6}+\frac{23271}{1679}a^{5}-\frac{11509}{1679}a^{4}-\frac{4557}{1679}a^{3}-\frac{2356}{1679}a^{2}-\frac{7497}{3358}a+\frac{1420}{1679}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 198.57668435 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 198.57668435 \cdot 1}{2\cdot\sqrt{2948433986992424882176}}\cr\approx \mathstrut & 0.17534817030 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 + 6*x^18 + 18*x^16 + 39*x^14 + 65*x^12 + 73*x^10 + 45*x^8 + 4*x^6 - 11*x^4 - 2*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 + 6*x^18 + 18*x^16 + 39*x^14 + 65*x^12 + 73*x^10 + 45*x^8 + 4*x^6 - 11*x^4 - 2*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 + 6*x^18 + 18*x^16 + 39*x^14 + 65*x^12 + 73*x^10 + 45*x^8 + 4*x^6 - 11*x^4 - 2*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 6*x^18 + 18*x^16 + 39*x^14 + 65*x^12 + 73*x^10 + 45*x^8 + 4*x^6 - 11*x^4 - 2*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.S_5$ (as 20T799):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 122880
The 252 conjugacy class representatives for $C_2^{10}.S_5$
Character table for $C_2^{10}.S_5$

Intermediate fields

5.1.4549.1, 10.0.1324377664.1, 10.0.54299484224.2, 10.2.848429441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.10.0.1}{10} }^{2}$ ${\href{/padicField/5.5.0.1}{5} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.10.0.1}{10} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ R ${\href{/padicField/43.8.0.1}{8} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.0.1$x^{4} + x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} + x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.12.12.23$x^{12} + 56 x^{10} - 152 x^{9} - 764 x^{8} + 2976 x^{7} - 960 x^{6} - 11008 x^{5} + 20336 x^{4} - 14976 x^{3} + 80768 x^{2} + 6016 x + 38848$$2$$6$$12$$C_2^2 \times A_4$$[2, 2, 2]^{6}$
\(41\) Copy content Toggle raw display 41.2.0.1$x^{2} + 38 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} + 38 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.2$x^{2} + 123$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.1.2$x^{2} + 123$$2$$1$$1$$C_2$$[\ ]_{2}$
41.6.0.1$x^{6} + 4 x^{4} + 33 x^{3} + 39 x^{2} + 6 x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$
41.6.0.1$x^{6} + 4 x^{4} + 33 x^{3} + 39 x^{2} + 6 x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$
\(4549\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$