Properties

Label 20.0.175...161.1
Degree $20$
Signature $[0, 10]$
Discriminant $1.759\times 10^{27}$
Root discriminant \(23.03\)
Ramified primes $3,401$
Class number $2$
Class group [2]
Galois group $C_2^4:D_5$ (as 20T38)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 9*x^19 + 43*x^18 - 133*x^17 + 293*x^16 - 525*x^15 + 893*x^14 - 1457*x^13 + 2102*x^12 - 2770*x^11 + 3616*x^10 - 4338*x^9 + 4157*x^8 - 3013*x^7 + 1702*x^6 - 747*x^5 + 166*x^4 + 36*x^3 + 32*x^2 - 80*x + 32)
 
gp: K = bnfinit(y^20 - 9*y^19 + 43*y^18 - 133*y^17 + 293*y^16 - 525*y^15 + 893*y^14 - 1457*y^13 + 2102*y^12 - 2770*y^11 + 3616*y^10 - 4338*y^9 + 4157*y^8 - 3013*y^7 + 1702*y^6 - 747*y^5 + 166*y^4 + 36*y^3 + 32*y^2 - 80*y + 32, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 9*x^19 + 43*x^18 - 133*x^17 + 293*x^16 - 525*x^15 + 893*x^14 - 1457*x^13 + 2102*x^12 - 2770*x^11 + 3616*x^10 - 4338*x^9 + 4157*x^8 - 3013*x^7 + 1702*x^6 - 747*x^5 + 166*x^4 + 36*x^3 + 32*x^2 - 80*x + 32);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 9*x^19 + 43*x^18 - 133*x^17 + 293*x^16 - 525*x^15 + 893*x^14 - 1457*x^13 + 2102*x^12 - 2770*x^11 + 3616*x^10 - 4338*x^9 + 4157*x^8 - 3013*x^7 + 1702*x^6 - 747*x^5 + 166*x^4 + 36*x^3 + 32*x^2 - 80*x + 32)
 

\( x^{20} - 9 x^{19} + 43 x^{18} - 133 x^{17} + 293 x^{16} - 525 x^{15} + 893 x^{14} - 1457 x^{13} + \cdots + 32 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1759014386056767111350986161\) \(\medspace = 3^{8}\cdot 401^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.03\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}401^{1/2}\approx 34.68429039204925$
Ramified primes:   \(3\), \(401\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{401}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{12}+\frac{1}{3}a^{11}+\frac{1}{3}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{6}a^{16}-\frac{1}{6}a^{15}-\frac{1}{6}a^{14}-\frac{1}{6}a^{13}-\frac{1}{6}a^{12}+\frac{1}{6}a^{11}-\frac{1}{2}a^{10}+\frac{1}{6}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{2}a^{4}+\frac{1}{6}a^{3}+\frac{1}{6}a$, $\frac{1}{12}a^{17}-\frac{1}{12}a^{16}-\frac{1}{12}a^{15}-\frac{1}{12}a^{14}+\frac{5}{12}a^{13}-\frac{5}{12}a^{12}-\frac{1}{4}a^{11}-\frac{5}{12}a^{10}-\frac{1}{2}a^{9}+\frac{1}{6}a^{8}+\frac{1}{3}a^{7}+\frac{1}{6}a^{6}-\frac{1}{4}a^{5}-\frac{5}{12}a^{4}-\frac{1}{2}a^{3}+\frac{1}{12}a^{2}-\frac{1}{2}a$, $\frac{1}{1992}a^{18}+\frac{25}{664}a^{17}-\frac{23}{664}a^{16}-\frac{39}{664}a^{15}-\frac{35}{1992}a^{14}-\frac{87}{664}a^{13}+\frac{205}{1992}a^{12}+\frac{743}{1992}a^{11}-\frac{149}{996}a^{10}-\frac{247}{996}a^{9}-\frac{31}{249}a^{8}+\frac{155}{996}a^{7}+\frac{71}{664}a^{6}+\frac{189}{664}a^{5}-\frac{63}{332}a^{4}-\frac{277}{664}a^{3}+\frac{109}{996}a^{2}-\frac{59}{249}a-\frac{67}{249}$, $\frac{1}{56\!\cdots\!72}a^{19}-\frac{2593601285403}{18\!\cdots\!24}a^{18}-\frac{131517172248745}{56\!\cdots\!72}a^{17}-\frac{18\!\cdots\!41}{56\!\cdots\!72}a^{16}-\frac{209120805001409}{14\!\cdots\!48}a^{15}+\frac{23\!\cdots\!45}{18\!\cdots\!24}a^{14}+\frac{10\!\cdots\!33}{56\!\cdots\!72}a^{13}+\frac{19\!\cdots\!35}{56\!\cdots\!72}a^{12}+\frac{18\!\cdots\!71}{94\!\cdots\!12}a^{11}+\frac{87\!\cdots\!17}{28\!\cdots\!36}a^{10}-\frac{17\!\cdots\!35}{70\!\cdots\!34}a^{9}+\frac{317566849292689}{94\!\cdots\!12}a^{8}-\frac{14\!\cdots\!39}{56\!\cdots\!72}a^{7}-\frac{32\!\cdots\!57}{56\!\cdots\!72}a^{6}+\frac{33\!\cdots\!39}{94\!\cdots\!12}a^{5}-\frac{26\!\cdots\!67}{56\!\cdots\!72}a^{4}+\frac{33\!\cdots\!63}{28\!\cdots\!36}a^{3}-\frac{843954194227}{6571510604646}a^{2}+\frac{10\!\cdots\!99}{23\!\cdots\!78}a-\frac{262575187935147}{11\!\cdots\!39}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{12\!\cdots\!69}{18\!\cdots\!24}a^{19}-\frac{10\!\cdots\!31}{18\!\cdots\!24}a^{18}+\frac{15\!\cdots\!79}{56\!\cdots\!72}a^{17}-\frac{45\!\cdots\!37}{56\!\cdots\!72}a^{16}+\frac{73\!\cdots\!65}{43\!\cdots\!44}a^{15}-\frac{16\!\cdots\!97}{56\!\cdots\!72}a^{14}+\frac{27\!\cdots\!65}{56\!\cdots\!72}a^{13}-\frac{44\!\cdots\!25}{56\!\cdots\!72}a^{12}+\frac{38\!\cdots\!13}{35\!\cdots\!17}a^{11}-\frac{39\!\cdots\!59}{28\!\cdots\!36}a^{10}+\frac{25\!\cdots\!73}{14\!\cdots\!68}a^{9}-\frac{60\!\cdots\!35}{28\!\cdots\!36}a^{8}+\frac{10\!\cdots\!27}{56\!\cdots\!72}a^{7}-\frac{21\!\cdots\!75}{18\!\cdots\!24}a^{6}+\frac{18\!\cdots\!64}{35\!\cdots\!17}a^{5}-\frac{10\!\cdots\!57}{56\!\cdots\!72}a^{4}-\frac{81\!\cdots\!32}{35\!\cdots\!17}a^{3}+\frac{20651469763739}{4381007069764}a^{2}+\frac{29\!\cdots\!61}{70\!\cdots\!34}a-\frac{15\!\cdots\!96}{35\!\cdots\!17}$, $\frac{39\!\cdots\!65}{56\!\cdots\!72}a^{19}-\frac{42\!\cdots\!59}{56\!\cdots\!72}a^{18}+\frac{21\!\cdots\!61}{56\!\cdots\!72}a^{17}-\frac{23\!\cdots\!73}{18\!\cdots\!24}a^{16}+\frac{39\!\cdots\!81}{14\!\cdots\!48}a^{15}-\frac{89\!\cdots\!45}{18\!\cdots\!24}a^{14}+\frac{44\!\cdots\!79}{56\!\cdots\!72}a^{13}-\frac{24\!\cdots\!97}{18\!\cdots\!24}a^{12}+\frac{22\!\cdots\!50}{11\!\cdots\!39}a^{11}-\frac{67\!\cdots\!11}{28\!\cdots\!36}a^{10}+\frac{44\!\cdots\!97}{14\!\cdots\!68}a^{9}-\frac{10\!\cdots\!77}{28\!\cdots\!36}a^{8}+\frac{19\!\cdots\!37}{56\!\cdots\!72}a^{7}-\frac{42\!\cdots\!93}{18\!\cdots\!24}a^{6}+\frac{81\!\cdots\!67}{70\!\cdots\!34}a^{5}-\frac{25\!\cdots\!91}{56\!\cdots\!72}a^{4}+\frac{18\!\cdots\!85}{14\!\cdots\!68}a^{3}+\frac{54109993108471}{6571510604646}a^{2}+\frac{44\!\cdots\!07}{70\!\cdots\!34}a-\frac{95\!\cdots\!78}{11\!\cdots\!39}$, $\frac{98\!\cdots\!31}{56\!\cdots\!72}a^{19}-\frac{78\!\cdots\!67}{56\!\cdots\!72}a^{18}+\frac{34\!\cdots\!01}{56\!\cdots\!72}a^{17}-\frac{96\!\cdots\!59}{56\!\cdots\!72}a^{16}+\frac{48\!\cdots\!05}{14\!\cdots\!48}a^{15}-\frac{32\!\cdots\!07}{56\!\cdots\!72}a^{14}+\frac{54\!\cdots\!75}{56\!\cdots\!72}a^{13}-\frac{28\!\cdots\!29}{18\!\cdots\!24}a^{12}+\frac{58\!\cdots\!73}{28\!\cdots\!36}a^{11}-\frac{25\!\cdots\!65}{94\!\cdots\!12}a^{10}+\frac{24\!\cdots\!29}{70\!\cdots\!34}a^{9}-\frac{36\!\cdots\!01}{94\!\cdots\!12}a^{8}+\frac{58\!\cdots\!57}{18\!\cdots\!24}a^{7}-\frac{10\!\cdots\!27}{56\!\cdots\!72}a^{6}+\frac{79\!\cdots\!67}{94\!\cdots\!12}a^{5}-\frac{13\!\cdots\!65}{56\!\cdots\!72}a^{4}-\frac{19\!\cdots\!67}{28\!\cdots\!36}a^{3}+\frac{56420344932713}{13143021209292}a^{2}+\frac{55\!\cdots\!89}{70\!\cdots\!34}a-\frac{65\!\cdots\!64}{11\!\cdots\!39}$, $\frac{405580811451687}{94\!\cdots\!12}a^{19}-\frac{24\!\cdots\!73}{70\!\cdots\!34}a^{18}+\frac{73\!\cdots\!91}{47\!\cdots\!56}a^{17}-\frac{21\!\cdots\!41}{47\!\cdots\!56}a^{16}+\frac{16\!\cdots\!07}{181811793395206}a^{15}-\frac{11\!\cdots\!23}{70\!\cdots\!34}a^{14}+\frac{65\!\cdots\!99}{23\!\cdots\!78}a^{13}-\frac{15\!\cdots\!43}{35\!\cdots\!17}a^{12}+\frac{17\!\cdots\!41}{28\!\cdots\!36}a^{11}-\frac{57\!\cdots\!39}{70\!\cdots\!34}a^{10}+\frac{14\!\cdots\!21}{14\!\cdots\!68}a^{9}-\frac{17\!\cdots\!33}{14\!\cdots\!68}a^{8}+\frac{31\!\cdots\!67}{28\!\cdots\!36}a^{7}-\frac{17\!\cdots\!85}{23\!\cdots\!78}a^{6}+\frac{34\!\cdots\!19}{94\!\cdots\!12}a^{5}-\frac{15\!\cdots\!75}{94\!\cdots\!12}a^{4}+\frac{32\!\cdots\!13}{94\!\cdots\!12}a^{3}+\frac{28095977642825}{13143021209292}a^{2}+\frac{55\!\cdots\!07}{35\!\cdots\!17}a-\frac{11\!\cdots\!52}{35\!\cdots\!17}$, $\frac{238555267040071}{683437102883184}a^{19}-\frac{661724467445131}{227812367627728}a^{18}+\frac{29\!\cdots\!85}{227812367627728}a^{17}-\frac{84\!\cdots\!59}{227812367627728}a^{16}+\frac{39\!\cdots\!49}{52572084837168}a^{15}-\frac{87\!\cdots\!09}{683437102883184}a^{14}+\frac{14\!\cdots\!33}{683437102883184}a^{13}-\frac{79\!\cdots\!07}{227812367627728}a^{12}+\frac{20\!\cdots\!58}{42714818930199}a^{11}-\frac{20\!\cdots\!43}{341718551441592}a^{10}+\frac{45\!\cdots\!53}{56953091906932}a^{9}-\frac{10\!\cdots\!37}{113906183813864}a^{8}+\frac{51\!\cdots\!43}{683437102883184}a^{7}-\frac{31\!\cdots\!25}{683437102883184}a^{6}+\frac{18\!\cdots\!17}{85429637860398}a^{5}-\frac{47\!\cdots\!13}{683437102883184}a^{4}-\frac{11\!\cdots\!19}{85429637860398}a^{3}+\frac{156100183441405}{13143021209292}a^{2}+\frac{764912573908562}{42714818930199}a-\frac{542888611496381}{42714818930199}$, $\frac{30\!\cdots\!57}{56\!\cdots\!72}a^{19}-\frac{24\!\cdots\!03}{56\!\cdots\!72}a^{18}+\frac{10\!\cdots\!65}{56\!\cdots\!72}a^{17}-\frac{96\!\cdots\!49}{18\!\cdots\!24}a^{16}+\frac{14\!\cdots\!53}{14\!\cdots\!48}a^{15}-\frac{94\!\cdots\!99}{56\!\cdots\!72}a^{14}+\frac{16\!\cdots\!03}{56\!\cdots\!72}a^{13}-\frac{25\!\cdots\!63}{56\!\cdots\!72}a^{12}+\frac{42\!\cdots\!41}{70\!\cdots\!34}a^{11}-\frac{22\!\cdots\!31}{28\!\cdots\!36}a^{10}+\frac{14\!\cdots\!11}{14\!\cdots\!68}a^{9}-\frac{10\!\cdots\!75}{94\!\cdots\!12}a^{8}+\frac{16\!\cdots\!39}{18\!\cdots\!24}a^{7}-\frac{30\!\cdots\!79}{56\!\cdots\!72}a^{6}+\frac{18\!\cdots\!95}{70\!\cdots\!34}a^{5}-\frac{46\!\cdots\!95}{56\!\cdots\!72}a^{4}-\frac{20\!\cdots\!59}{14\!\cdots\!68}a^{3}+\frac{14294058311297}{3285755302323}a^{2}+\frac{30\!\cdots\!89}{11\!\cdots\!39}a-\frac{43\!\cdots\!52}{35\!\cdots\!17}$, $\frac{10\!\cdots\!73}{28\!\cdots\!36}a^{19}-\frac{83\!\cdots\!37}{28\!\cdots\!36}a^{18}+\frac{37\!\cdots\!21}{28\!\cdots\!36}a^{17}-\frac{10\!\cdots\!75}{28\!\cdots\!36}a^{16}+\frac{16\!\cdots\!87}{21\!\cdots\!72}a^{15}-\frac{35\!\cdots\!91}{28\!\cdots\!36}a^{14}+\frac{20\!\cdots\!97}{94\!\cdots\!12}a^{13}-\frac{32\!\cdots\!69}{94\!\cdots\!12}a^{12}+\frac{16\!\cdots\!95}{35\!\cdots\!17}a^{11}-\frac{14\!\cdots\!97}{23\!\cdots\!78}a^{10}+\frac{27\!\cdots\!63}{35\!\cdots\!17}a^{9}-\frac{12\!\cdots\!35}{14\!\cdots\!68}a^{8}+\frac{68\!\cdots\!15}{94\!\cdots\!12}a^{7}-\frac{12\!\cdots\!13}{28\!\cdots\!36}a^{6}+\frac{48\!\cdots\!21}{23\!\cdots\!78}a^{5}-\frac{19\!\cdots\!97}{28\!\cdots\!36}a^{4}-\frac{46\!\cdots\!19}{47\!\cdots\!56}a^{3}+\frac{99614062650191}{13143021209292}a^{2}+\frac{77\!\cdots\!21}{35\!\cdots\!17}a-\frac{16\!\cdots\!87}{11\!\cdots\!39}$, $\frac{727684314847523}{28\!\cdots\!36}a^{19}-\frac{31\!\cdots\!75}{94\!\cdots\!12}a^{18}+\frac{49\!\cdots\!27}{28\!\cdots\!36}a^{17}-\frac{16\!\cdots\!17}{28\!\cdots\!36}a^{16}+\frac{93\!\cdots\!79}{727247173580824}a^{15}-\frac{62\!\cdots\!01}{28\!\cdots\!36}a^{14}+\frac{10\!\cdots\!77}{28\!\cdots\!36}a^{13}-\frac{59\!\cdots\!47}{94\!\cdots\!12}a^{12}+\frac{31\!\cdots\!54}{35\!\cdots\!17}a^{11}-\frac{16\!\cdots\!39}{14\!\cdots\!68}a^{10}+\frac{36\!\cdots\!43}{23\!\cdots\!78}a^{9}-\frac{26\!\cdots\!11}{14\!\cdots\!68}a^{8}+\frac{15\!\cdots\!09}{94\!\cdots\!12}a^{7}-\frac{30\!\cdots\!53}{28\!\cdots\!36}a^{6}+\frac{22\!\cdots\!24}{35\!\cdots\!17}a^{5}-\frac{81\!\cdots\!29}{28\!\cdots\!36}a^{4}-\frac{22\!\cdots\!63}{35\!\cdots\!17}a^{3}+\frac{38441881725883}{6571510604646}a^{2}+\frac{14\!\cdots\!26}{35\!\cdots\!17}a-\frac{14\!\cdots\!59}{35\!\cdots\!17}$, $\frac{85\!\cdots\!51}{18\!\cdots\!24}a^{19}-\frac{19\!\cdots\!29}{56\!\cdots\!72}a^{18}+\frac{80\!\cdots\!71}{56\!\cdots\!72}a^{17}-\frac{21\!\cdots\!21}{56\!\cdots\!72}a^{16}+\frac{31\!\cdots\!45}{43\!\cdots\!44}a^{15}-\frac{67\!\cdots\!33}{56\!\cdots\!72}a^{14}+\frac{11\!\cdots\!33}{56\!\cdots\!72}a^{13}-\frac{18\!\cdots\!25}{56\!\cdots\!72}a^{12}+\frac{39\!\cdots\!87}{94\!\cdots\!12}a^{11}-\frac{51\!\cdots\!03}{94\!\cdots\!12}a^{10}+\frac{25\!\cdots\!23}{35\!\cdots\!17}a^{9}-\frac{71\!\cdots\!19}{94\!\cdots\!12}a^{8}+\frac{10\!\cdots\!87}{18\!\cdots\!24}a^{7}-\frac{18\!\cdots\!29}{56\!\cdots\!72}a^{6}+\frac{14\!\cdots\!15}{94\!\cdots\!12}a^{5}-\frac{23\!\cdots\!67}{56\!\cdots\!72}a^{4}-\frac{11\!\cdots\!25}{94\!\cdots\!12}a^{3}-\frac{31409651066747}{13143021209292}a^{2}+\frac{13\!\cdots\!25}{70\!\cdots\!34}a-\frac{24\!\cdots\!00}{35\!\cdots\!17}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 110300.954595 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 110300.954595 \cdot 2}{2\cdot\sqrt{1759014386056767111350986161}}\cr\approx \mathstrut & 0.252198941199 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 9*x^19 + 43*x^18 - 133*x^17 + 293*x^16 - 525*x^15 + 893*x^14 - 1457*x^13 + 2102*x^12 - 2770*x^11 + 3616*x^10 - 4338*x^9 + 4157*x^8 - 3013*x^7 + 1702*x^6 - 747*x^5 + 166*x^4 + 36*x^3 + 32*x^2 - 80*x + 32)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 9*x^19 + 43*x^18 - 133*x^17 + 293*x^16 - 525*x^15 + 893*x^14 - 1457*x^13 + 2102*x^12 - 2770*x^11 + 3616*x^10 - 4338*x^9 + 4157*x^8 - 3013*x^7 + 1702*x^6 - 747*x^5 + 166*x^4 + 36*x^3 + 32*x^2 - 80*x + 32, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 9*x^19 + 43*x^18 - 133*x^17 + 293*x^16 - 525*x^15 + 893*x^14 - 1457*x^13 + 2102*x^12 - 2770*x^11 + 3616*x^10 - 4338*x^9 + 4157*x^8 - 3013*x^7 + 1702*x^6 - 747*x^5 + 166*x^4 + 36*x^3 + 32*x^2 - 80*x + 32);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 9*x^19 + 43*x^18 - 133*x^17 + 293*x^16 - 525*x^15 + 893*x^14 - 1457*x^13 + 2102*x^12 - 2770*x^11 + 3616*x^10 - 4338*x^9 + 4157*x^8 - 3013*x^7 + 1702*x^6 - 747*x^5 + 166*x^4 + 36*x^3 + 32*x^2 - 80*x + 32);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^4:D_5$ (as 20T38):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 160
The 10 conjugacy class representatives for $C_2^4:D_5$
Character table for $C_2^4:D_5$

Intermediate fields

5.5.160801.1, 10.6.2094413889681.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 siblings: data not computed
Degree 16 sibling: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 10.6.232712654409.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.5.0.1}{5} }^{4}$ R ${\href{/padicField/5.5.0.1}{5} }^{4}$ ${\href{/padicField/7.5.0.1}{5} }^{4}$ ${\href{/padicField/11.5.0.1}{5} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{5}$ ${\href{/padicField/19.4.0.1}{4} }^{5}$ ${\href{/padicField/23.2.0.1}{2} }^{9}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.5.0.1}{5} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.5.0.1}{5} }^{4}$ ${\href{/padicField/43.5.0.1}{5} }^{4}$ ${\href{/padicField/47.5.0.1}{5} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{9}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.4.2.2$x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} + 2 x^{3} + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.2.2$x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(401\) Copy content Toggle raw display $\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$