Properties

Label 20.0.159...669.1
Degree $20$
Signature $[0, 10]$
Discriminant $1.591\times 10^{21}$
Root discriminant \(11.48\)
Ramified primes $3,1609,4021$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^8.(D_4\times S_5)$ (as 20T887)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 11*x^18 - 13*x^16 - 19*x^15 + 50*x^14 + 8*x^13 - 42*x^12 - 38*x^11 + 42*x^10 + 31*x^9 + 17*x^8 - 59*x^7 + 6*x^6 + 2*x^5 - x^4 + 15*x^3 - 2*x^2 - 3*x + 1)
 
gp: K = bnfinit(y^20 - 6*y^19 + 11*y^18 - 13*y^16 - 19*y^15 + 50*y^14 + 8*y^13 - 42*y^12 - 38*y^11 + 42*y^10 + 31*y^9 + 17*y^8 - 59*y^7 + 6*y^6 + 2*y^5 - y^4 + 15*y^3 - 2*y^2 - 3*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 6*x^19 + 11*x^18 - 13*x^16 - 19*x^15 + 50*x^14 + 8*x^13 - 42*x^12 - 38*x^11 + 42*x^10 + 31*x^9 + 17*x^8 - 59*x^7 + 6*x^6 + 2*x^5 - x^4 + 15*x^3 - 2*x^2 - 3*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 6*x^19 + 11*x^18 - 13*x^16 - 19*x^15 + 50*x^14 + 8*x^13 - 42*x^12 - 38*x^11 + 42*x^10 + 31*x^9 + 17*x^8 - 59*x^7 + 6*x^6 + 2*x^5 - x^4 + 15*x^3 - 2*x^2 - 3*x + 1)
 

\( x^{20} - 6 x^{19} + 11 x^{18} - 13 x^{16} - 19 x^{15} + 50 x^{14} + 8 x^{13} - 42 x^{12} - 38 x^{11} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1591368644495819328669\) \(\medspace = 3^{10}\cdot 1609^{4}\cdot 4021\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.48\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}1609^{1/2}4021^{1/2}\approx 4405.606314685869$
Ramified primes:   \(3\), \(1609\), \(4021\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{4021}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{73}a^{18}-\frac{22}{73}a^{17}-\frac{23}{73}a^{16}+\frac{27}{73}a^{15}-\frac{35}{73}a^{14}-\frac{26}{73}a^{13}+\frac{33}{73}a^{12}+\frac{26}{73}a^{11}+\frac{17}{73}a^{10}+\frac{20}{73}a^{9}+\frac{22}{73}a^{8}-\frac{11}{73}a^{7}+\frac{23}{73}a^{6}+\frac{23}{73}a^{5}+\frac{31}{73}a^{4}-\frac{28}{73}a^{3}+\frac{15}{73}a^{2}-\frac{2}{73}a+\frac{7}{73}$, $\frac{1}{14026147}a^{19}+\frac{46492}{14026147}a^{18}+\frac{2911223}{14026147}a^{17}+\frac{2392303}{14026147}a^{16}-\frac{2529864}{14026147}a^{15}+\frac{6752822}{14026147}a^{14}+\frac{5119915}{14026147}a^{13}-\frac{1906743}{14026147}a^{12}-\frac{4495788}{14026147}a^{11}+\frac{2465816}{14026147}a^{10}-\frac{2667284}{14026147}a^{9}+\frac{4850906}{14026147}a^{8}+\frac{267352}{14026147}a^{7}+\frac{5511968}{14026147}a^{6}-\frac{5833173}{14026147}a^{5}+\frac{5215422}{14026147}a^{4}+\frac{2296085}{14026147}a^{3}+\frac{6128470}{14026147}a^{2}-\frac{4364178}{14026147}a+\frac{2440481}{14026147}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{82}{73} a^{19} - \frac{435}{73} a^{18} + \frac{627}{73} a^{17} + 4 a^{16} - \frac{655}{73} a^{15} - \frac{1940}{73} a^{14} + \frac{2590}{73} a^{13} + \frac{1830}{73} a^{12} - \frac{1410}{73} a^{11} - \frac{3630}{73} a^{10} + \frac{714}{73} a^{9} + \frac{2060}{73} a^{8} + \frac{2887}{73} a^{7} - \frac{2616}{73} a^{6} - \frac{354}{73} a^{5} - \frac{591}{73} a^{4} - \frac{237}{73} a^{3} + \frac{661}{73} a^{2} + \frac{99}{73} a - \frac{53}{73} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{6091276}{14026147}a^{19}-\frac{25159907}{14026147}a^{18}+\frac{8997927}{14026147}a^{17}+\frac{75373549}{14026147}a^{16}-\frac{24452770}{14026147}a^{15}-\frac{197087877}{14026147}a^{14}+\frac{26815742}{14026147}a^{13}+\frac{353863516}{14026147}a^{12}+\frac{42091283}{14026147}a^{11}-\frac{380032631}{14026147}a^{10}-\frac{240020198}{14026147}a^{9}+\frac{213591143}{14026147}a^{8}+\frac{356411029}{14026147}a^{7}+\frac{41131374}{14026147}a^{6}-\frac{218996892}{14026147}a^{5}-\frac{39592315}{14026147}a^{4}-\frac{76764613}{14026147}a^{3}+\frac{2797946}{14026147}a^{2}+\frac{44729688}{14026147}a-\frac{2178519}{14026147}$, $\frac{15993462}{14026147}a^{19}-\frac{86558157}{14026147}a^{18}+\frac{1793881}{192139}a^{17}+\frac{49085547}{14026147}a^{16}-\frac{147803598}{14026147}a^{15}-\frac{361361032}{14026147}a^{14}+\frac{565730951}{14026147}a^{13}+\frac{319319854}{14026147}a^{12}-\frac{377890415}{14026147}a^{11}-\frac{688718057}{14026147}a^{10}+\frac{266624319}{14026147}a^{9}+\frac{436144362}{14026147}a^{8}+\frac{487338726}{14026147}a^{7}-\frac{605283641}{14026147}a^{6}-\frac{53236751}{14026147}a^{5}-\frac{72544924}{14026147}a^{4}-\frac{45830047}{14026147}a^{3}+\frac{169248534}{14026147}a^{2}+\frac{32975494}{14026147}a-\frac{27483849}{14026147}$, $\frac{10117353}{14026147}a^{19}-\frac{59841870}{14026147}a^{18}+\frac{100860572}{14026147}a^{17}+\frac{31789519}{14026147}a^{16}-\frac{148147317}{14026147}a^{15}-\frac{241577026}{14026147}a^{14}+\frac{498866903}{14026147}a^{13}+\frac{254328426}{14026147}a^{12}-\frac{458887443}{14026147}a^{11}-\frac{588851910}{14026147}a^{10}+\frac{349870105}{14026147}a^{9}+\frac{542779785}{14026147}a^{8}+\frac{318135101}{14026147}a^{7}-\frac{636538029}{14026147}a^{6}-\frac{192398509}{14026147}a^{5}+\frac{20298702}{14026147}a^{4}+\frac{25260783}{14026147}a^{3}+\frac{178674866}{14026147}a^{2}+\frac{42441970}{14026147}a-\frac{34636200}{14026147}$, $\frac{2390396}{14026147}a^{19}-\frac{3902382}{14026147}a^{18}-\frac{24583339}{14026147}a^{17}+\frac{60647848}{14026147}a^{16}+\frac{19165308}{14026147}a^{15}-\frac{93136311}{14026147}a^{14}-\frac{132323650}{14026147}a^{13}+\frac{230744154}{14026147}a^{12}+\frac{151882287}{14026147}a^{11}-\frac{112622029}{14026147}a^{10}-\frac{292182510}{14026147}a^{9}-\frac{45556}{14026147}a^{8}+\frac{145229935}{14026147}a^{7}+\frac{243607942}{14026147}a^{6}-\frac{99800833}{14026147}a^{5}+\frac{22147078}{14026147}a^{4}-\frac{116981661}{14026147}a^{3}-\frac{64125820}{14026147}a^{2}+\frac{268104}{192139}a-\frac{4070466}{14026147}$, $\frac{7480162}{14026147}a^{19}-\frac{31950590}{14026147}a^{18}+\frac{19264687}{14026147}a^{17}+\frac{72926297}{14026147}a^{16}-\frac{24369358}{14026147}a^{15}-\frac{213704300}{14026147}a^{14}+\frac{51938913}{14026147}a^{13}+\frac{4488287}{192139}a^{12}+\frac{56362181}{14026147}a^{11}-\frac{351304335}{14026147}a^{10}-\frac{229384028}{14026147}a^{9}+\frac{124489390}{14026147}a^{8}+\frac{363094953}{14026147}a^{7}+\frac{63941449}{14026147}a^{6}-\frac{133783885}{14026147}a^{5}-\frac{69624238}{14026147}a^{4}-\frac{103505803}{14026147}a^{3}+\frac{312899}{14026147}a^{2}+\frac{47321056}{14026147}a-\frac{400728}{14026147}$, $\frac{9878730}{14026147}a^{19}-\frac{50381715}{14026147}a^{18}+\frac{62946208}{14026147}a^{17}+\frac{58588940}{14026147}a^{16}-\frac{79454051}{14026147}a^{15}-\frac{255143887}{14026147}a^{14}+\frac{259073755}{14026147}a^{13}+\frac{320129432}{14026147}a^{12}-\frac{136365688}{14026147}a^{11}-\frac{484222371}{14026147}a^{10}-\frac{37596529}{14026147}a^{9}+\frac{286478780}{14026147}a^{8}+\frac{411859085}{14026147}a^{7}-\frac{203267901}{14026147}a^{6}-\frac{140938271}{14026147}a^{5}-\frac{64037649}{14026147}a^{4}-\frac{91289620}{14026147}a^{3}+\frac{87074128}{14026147}a^{2}+\frac{18675767}{14026147}a-\frac{4120106}{14026147}$, $\frac{955036}{14026147}a^{19}-\frac{9474748}{14026147}a^{18}+\frac{26670641}{14026147}a^{17}-\frac{12609911}{14026147}a^{16}-\frac{39165009}{14026147}a^{15}-\frac{12567301}{14026147}a^{14}+\frac{143913631}{14026147}a^{13}-\frac{20826476}{14026147}a^{12}-\frac{163355265}{14026147}a^{11}-\frac{76813469}{14026147}a^{10}+\frac{188400814}{14026147}a^{9}+\frac{127010033}{14026147}a^{8}-\frac{24828413}{14026147}a^{7}-\frac{220765085}{14026147}a^{6}+\frac{1790780}{14026147}a^{5}+\frac{29795959}{14026147}a^{4}+\frac{44238969}{14026147}a^{3}+\frac{43501184}{14026147}a^{2}-\frac{12960654}{14026147}a-\frac{98960}{192139}$, $\frac{21634329}{14026147}a^{19}-\frac{104755234}{14026147}a^{18}+\frac{120005737}{14026147}a^{17}+\frac{120749972}{14026147}a^{16}-\frac{109911452}{14026147}a^{15}-\frac{545830644}{14026147}a^{14}+\frac{438776760}{14026147}a^{13}+\frac{623179172}{14026147}a^{12}-\frac{84225939}{14026147}a^{11}-\frac{940255405}{14026147}a^{10}-\frac{2493635}{192139}a^{9}+\frac{399772380}{14026147}a^{8}+\frac{868911354}{14026147}a^{7}-\frac{318085502}{14026147}a^{6}-\frac{134533837}{14026147}a^{5}-\frac{198062314}{14026147}a^{4}-\frac{147321640}{14026147}a^{3}+\frac{70422303}{14026147}a^{2}+\frac{35701495}{14026147}a-\frac{12823039}{14026147}$, $\frac{6804340}{14026147}a^{19}-\frac{37732653}{14026147}a^{18}+\frac{59069995}{14026147}a^{17}+\frac{20382294}{14026147}a^{16}-\frac{70674087}{14026147}a^{15}-\frac{160833164}{14026147}a^{14}+\frac{270142724}{14026147}a^{13}+\frac{147078598}{14026147}a^{12}-\frac{194358734}{14026147}a^{11}-\frac{341916758}{14026147}a^{10}+\frac{149627745}{14026147}a^{9}+\frac{242483102}{14026147}a^{8}+\frac{227601461}{14026147}a^{7}-\frac{312423623}{14026147}a^{6}-\frac{60505872}{14026147}a^{5}-\frac{36735629}{14026147}a^{4}+\frac{5409963}{14026147}a^{3}+\frac{78093580}{14026147}a^{2}+\frac{30677903}{14026147}a-\frac{24769813}{14026147}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 427.42684139 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 427.42684139 \cdot 1}{6\cdot\sqrt{1591368644495819328669}}\cr\approx \mathstrut & 0.17124733681 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 11*x^18 - 13*x^16 - 19*x^15 + 50*x^14 + 8*x^13 - 42*x^12 - 38*x^11 + 42*x^10 + 31*x^9 + 17*x^8 - 59*x^7 + 6*x^6 + 2*x^5 - x^4 + 15*x^3 - 2*x^2 - 3*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 6*x^19 + 11*x^18 - 13*x^16 - 19*x^15 + 50*x^14 + 8*x^13 - 42*x^12 - 38*x^11 + 42*x^10 + 31*x^9 + 17*x^8 - 59*x^7 + 6*x^6 + 2*x^5 - x^4 + 15*x^3 - 2*x^2 - 3*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 6*x^19 + 11*x^18 - 13*x^16 - 19*x^15 + 50*x^14 + 8*x^13 - 42*x^12 - 38*x^11 + 42*x^10 + 31*x^9 + 17*x^8 - 59*x^7 + 6*x^6 + 2*x^5 - x^4 + 15*x^3 - 2*x^2 - 3*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 6*x^19 + 11*x^18 - 13*x^16 - 19*x^15 + 50*x^14 + 8*x^13 - 42*x^12 - 38*x^11 + 42*x^10 + 31*x^9 + 17*x^8 - 59*x^7 + 6*x^6 + 2*x^5 - x^4 + 15*x^3 - 2*x^2 - 3*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^8.(D_4\times S_5)$ (as 20T887):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 245760
The 201 conjugacy class representatives for $C_2^8.(D_4\times S_5)$
Character table for $C_2^8.(D_4\times S_5)$

Intermediate fields

\(\Q(\sqrt{-3}) \), 5.1.1609.1, 10.0.629098083.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 20.2.26332894319002837533243.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20$ R ${\href{/padicField/5.10.0.1}{10} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.8.0.1}{8} }^{2}{,}\,{\href{/padicField/23.4.0.1}{4} }$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ $20$ ${\href{/padicField/43.8.0.1}{8} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{5}$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.20.10.1$x^{20} + 30 x^{18} + 409 x^{16} + 4 x^{15} + 3244 x^{14} - 60 x^{13} + 16162 x^{12} - 1250 x^{11} + 53008 x^{10} - 7102 x^{9} + 121150 x^{8} - 12140 x^{7} + 219264 x^{6} + 5736 x^{5} + 257465 x^{4} + 35250 x^{3} + 250183 x^{2} + 51502 x + 77812$$2$$10$$10$20T3$[\ ]_{2}^{10}$
\(1609\) Copy content Toggle raw display $\Q_{1609}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1609}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1609}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1609}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$
\(4021\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$