Properties

Label 20.0.158...448.2
Degree $20$
Signature $[0, 10]$
Discriminant $1.583\times 10^{47}$
Root discriminant \(229.07\)
Ramified primes $2,41$
Class number $631232800$ (GRH)
Class group [2, 22, 14346200] (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 164*x^18 + 10578*x^16 + 338824*x^14 + 5621264*x^12 + 47086368*x^10 + 203993368*x^8 + 449537120*x^6 + 458498736*x^4 + 162171072*x^2 + 8608032)
 
gp: K = bnfinit(y^20 + 164*y^18 + 10578*y^16 + 338824*y^14 + 5621264*y^12 + 47086368*y^10 + 203993368*y^8 + 449537120*y^6 + 458498736*y^4 + 162171072*y^2 + 8608032, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 164*x^18 + 10578*x^16 + 338824*x^14 + 5621264*x^12 + 47086368*x^10 + 203993368*x^8 + 449537120*x^6 + 458498736*x^4 + 162171072*x^2 + 8608032);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 164*x^18 + 10578*x^16 + 338824*x^14 + 5621264*x^12 + 47086368*x^10 + 203993368*x^8 + 449537120*x^6 + 458498736*x^4 + 162171072*x^2 + 8608032)
 

\( x^{20} + 164 x^{18} + 10578 x^{16} + 338824 x^{14} + 5621264 x^{12} + 47086368 x^{10} + 203993368 x^{8} + \cdots + 8608032 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(158322645890088916737377685620382389712556392448\) \(\medspace = 2^{55}\cdot 41^{19}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(229.07\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}41^{19/20}\approx 229.07471344056387$
Ramified primes:   \(2\), \(41\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{82}) \)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(656=2^{4}\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{656}(1,·)$, $\chi_{656}(131,·)$, $\chi_{656}(537,·)$, $\chi_{656}(385,·)$, $\chi_{656}(651,·)$, $\chi_{656}(529,·)$, $\chi_{656}(595,·)$, $\chi_{656}(409,·)$, $\chi_{656}(25,·)$, $\chi_{656}(155,·)$, $\chi_{656}(419,·)$, $\chi_{656}(625,·)$, $\chi_{656}(105,·)$, $\chi_{656}(43,·)$, $\chi_{656}(305,·)$, $\chi_{656}(579,·)$, $\chi_{656}(531,·)$, $\chi_{656}(441,·)$, $\chi_{656}(635,·)$, $\chi_{656}(443,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{512}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{6}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{6}a^{5}+\frac{1}{3}a$, $\frac{1}{18}a^{6}+\frac{1}{18}a^{4}-\frac{1}{9}a^{2}$, $\frac{1}{18}a^{7}+\frac{1}{18}a^{5}-\frac{1}{9}a^{3}$, $\frac{1}{36}a^{8}+\frac{2}{9}a^{2}$, $\frac{1}{324}a^{9}+\frac{1}{54}a^{7}+\frac{1}{27}a^{5}-\frac{7}{81}a^{3}-\frac{2}{9}a$, $\frac{1}{324}a^{10}-\frac{1}{108}a^{8}-\frac{1}{54}a^{6}+\frac{2}{81}a^{4}$, $\frac{1}{324}a^{11}-\frac{1}{54}a^{7}+\frac{13}{162}a^{5}-\frac{4}{27}a^{3}+\frac{1}{3}a$, $\frac{1}{1944}a^{12}+\frac{1}{972}a^{10}-\frac{1}{162}a^{8}+\frac{4}{243}a^{6}+\frac{37}{486}a^{4}+\frac{1}{27}a^{2}$, $\frac{1}{1944}a^{13}+\frac{1}{972}a^{11}-\frac{1}{486}a^{7}-\frac{35}{486}a^{5}-\frac{2}{81}a^{3}+\frac{2}{9}a$, $\frac{1}{5832}a^{14}+\frac{1}{5832}a^{12}+\frac{1}{1458}a^{10}+\frac{11}{1458}a^{8}+\frac{1}{729}a^{6}+\frac{49}{729}a^{4}+\frac{14}{81}a^{2}$, $\frac{1}{17496}a^{15}-\frac{1}{8748}a^{13}-\frac{1}{8748}a^{11}+\frac{13}{8748}a^{9}-\frac{11}{2187}a^{7}-\frac{337}{4374}a^{5}-\frac{4}{243}a^{3}+\frac{2}{9}a$, $\frac{1}{2554416}a^{16}+\frac{29}{1277208}a^{14}+\frac{145}{638604}a^{12}+\frac{38}{159651}a^{10}-\frac{2813}{319302}a^{8}-\frac{1177}{159651}a^{6}+\frac{2746}{53217}a^{4}+\frac{866}{5913}a^{2}-\frac{36}{73}$, $\frac{1}{2554416}a^{17}+\frac{29}{1277208}a^{15}+\frac{145}{638604}a^{13}+\frac{38}{159651}a^{11}+\frac{287}{638604}a^{9}-\frac{1177}{159651}a^{7}-\frac{3167}{53217}a^{5}-\frac{10}{5913}a^{3}-\frac{36}{73}a$, $\frac{1}{15\!\cdots\!92}a^{18}-\frac{4330702697}{51\!\cdots\!64}a^{16}-\frac{277512179849}{25\!\cdots\!32}a^{14}-\frac{3157007985851}{38\!\cdots\!48}a^{12}+\frac{19421259882173}{12\!\cdots\!16}a^{10}-\frac{27583516196039}{12\!\cdots\!16}a^{8}+\frac{411670887353963}{19\!\cdots\!74}a^{6}+\frac{85640012345146}{10\!\cdots\!43}a^{4}+\frac{14634796374019}{119383537284027}a^{2}-\frac{649746577081}{1473870830667}$, $\frac{1}{15\!\cdots\!92}a^{19}-\frac{4330702697}{51\!\cdots\!64}a^{17}-\frac{277512179849}{25\!\cdots\!32}a^{15}-\frac{3157007985851}{38\!\cdots\!48}a^{13}+\frac{19421259882173}{12\!\cdots\!16}a^{11}+\frac{6105498115985}{64\!\cdots\!58}a^{9}-\frac{304630336350199}{19\!\cdots\!74}a^{7}+\frac{131485512262283}{21\!\cdots\!86}a^{5}+\frac{17582538035353}{119383537284027}a^{3}+\frac{1489792206980}{4421612492001}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{2}\times C_{22}\times C_{14346200}$, which has order $631232800$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{2749118581}{12\!\cdots\!16}a^{18}+\frac{592278049703}{17\!\cdots\!88}a^{16}+\frac{777894164482}{358150611852081}a^{14}+\frac{17\!\cdots\!65}{25\!\cdots\!32}a^{12}+\frac{22\!\cdots\!05}{21\!\cdots\!86}a^{10}+\frac{17\!\cdots\!65}{238767074568054}a^{8}+\frac{79\!\cdots\!03}{32\!\cdots\!29}a^{6}+\frac{74\!\cdots\!05}{238767074568054}a^{4}+\frac{225915428862398}{39794512428009}a^{2}-\frac{697912851204}{491290276889}$, $\frac{1853119015}{38\!\cdots\!48}a^{18}+\frac{414649811203}{51\!\cdots\!64}a^{16}+\frac{1728314484419}{32\!\cdots\!29}a^{14}+\frac{699047945443039}{38\!\cdots\!48}a^{12}+\frac{10\!\cdots\!03}{32\!\cdots\!29}a^{10}+\frac{39\!\cdots\!41}{12\!\cdots\!16}a^{8}+\frac{15\!\cdots\!94}{96\!\cdots\!87}a^{6}+\frac{41\!\cdots\!88}{10\!\cdots\!43}a^{4}+\frac{45\!\cdots\!92}{119383537284027}a^{2}+\frac{8518922093918}{1473870830667}$, $\frac{8545234639}{77\!\cdots\!96}a^{18}+\frac{229530870737}{12\!\cdots\!16}a^{16}+\frac{14413647706321}{12\!\cdots\!16}a^{14}+\frac{13\!\cdots\!07}{38\!\cdots\!48}a^{12}+\frac{33\!\cdots\!71}{64\!\cdots\!58}a^{10}+\frac{47\!\cdots\!01}{12\!\cdots\!16}a^{8}+\frac{11\!\cdots\!74}{96\!\cdots\!87}a^{6}+\frac{30\!\cdots\!77}{21\!\cdots\!86}a^{4}+\frac{289182450827426}{119383537284027}a^{2}-\frac{2015339690660}{1473870830667}$, $\frac{3984165863}{25\!\cdots\!32}a^{18}+\frac{5903202019}{235496292724656}a^{16}+\frac{6835736673521}{42\!\cdots\!72}a^{14}+\frac{639412208930395}{12\!\cdots\!16}a^{12}+\frac{16\!\cdots\!27}{21\!\cdots\!86}a^{10}+\frac{25\!\cdots\!61}{42\!\cdots\!72}a^{8}+\frac{977004237080026}{44155554885873}a^{6}+\frac{27\!\cdots\!57}{716301223704162}a^{4}+\frac{1449201654538}{60570034137}a^{2}+\frac{668203024483}{491290276889}$, $\frac{303137}{307303908048}a^{18}+\frac{4047215}{25608659004}a^{16}+\frac{125966507}{12804329502}a^{14}+\frac{5708935952}{19206494253}a^{12}+\frac{113577711853}{25608659004}a^{10}+\frac{192653960444}{6402164751}a^{8}+\frac{1785147017396}{19206494253}a^{6}+\frac{253340742254}{2134054917}a^{4}+\frac{11028647933}{237117213}a^{2}+\frac{7516117}{2927373}$, $\frac{41529718087}{15\!\cdots\!92}a^{18}+\frac{2205708354247}{51\!\cdots\!64}a^{16}+\frac{17031147080707}{64\!\cdots\!58}a^{14}+\frac{15\!\cdots\!57}{19\!\cdots\!74}a^{12}+\frac{14\!\cdots\!03}{12\!\cdots\!16}a^{10}+\frac{10\!\cdots\!25}{12\!\cdots\!16}a^{8}+\frac{26\!\cdots\!76}{96\!\cdots\!87}a^{6}+\frac{11\!\cdots\!47}{21\!\cdots\!86}a^{4}+\frac{71\!\cdots\!06}{119383537284027}a^{2}+\frac{28977443788127}{1473870830667}$, $\frac{309602689121}{15\!\cdots\!92}a^{18}+\frac{16504460154335}{51\!\cdots\!64}a^{16}+\frac{64038532616227}{32\!\cdots\!29}a^{14}+\frac{23\!\cdots\!41}{38\!\cdots\!48}a^{12}+\frac{11\!\cdots\!09}{12\!\cdots\!16}a^{10}+\frac{76\!\cdots\!07}{12\!\cdots\!16}a^{8}+\frac{35\!\cdots\!77}{19\!\cdots\!74}a^{6}+\frac{25\!\cdots\!88}{10\!\cdots\!43}a^{4}+\frac{10\!\cdots\!06}{119383537284027}a^{2}+\frac{6326735928262}{1473870830667}$, $\frac{2401677581}{25\!\cdots\!32}a^{18}+\frac{270087344981}{17\!\cdots\!88}a^{16}+\frac{3019152069383}{28\!\cdots\!48}a^{14}+\frac{920465665098503}{25\!\cdots\!32}a^{12}+\frac{690192404468968}{10\!\cdots\!43}a^{10}+\frac{28\!\cdots\!61}{477534149136108}a^{8}+\frac{89\!\cdots\!08}{32\!\cdots\!29}a^{6}+\frac{42\!\cdots\!19}{716301223704162}a^{4}+\frac{21\!\cdots\!90}{39794512428009}a^{2}+\frac{7849817024215}{491290276889}$, $\frac{70339067435}{51\!\cdots\!64}a^{18}+\frac{473520229489}{21\!\cdots\!86}a^{16}+\frac{119394450309065}{85\!\cdots\!44}a^{14}+\frac{55\!\cdots\!25}{12\!\cdots\!16}a^{12}+\frac{71\!\cdots\!40}{10\!\cdots\!43}a^{10}+\frac{20\!\cdots\!07}{42\!\cdots\!72}a^{8}+\frac{50\!\cdots\!17}{32\!\cdots\!29}a^{6}+\frac{47\!\cdots\!95}{238767074568054}a^{4}+\frac{12\!\cdots\!38}{39794512428009}a^{2}-\frac{2192382654188}{491290276889}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6411717617.202166 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 6411717617.202166 \cdot 631232800}{2\cdot\sqrt{158322645890088916737377685620382389712556392448}}\cr\approx \mathstrut & 487.709385082941 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 + 164*x^18 + 10578*x^16 + 338824*x^14 + 5621264*x^12 + 47086368*x^10 + 203993368*x^8 + 449537120*x^6 + 458498736*x^4 + 162171072*x^2 + 8608032)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 + 164*x^18 + 10578*x^16 + 338824*x^14 + 5621264*x^12 + 47086368*x^10 + 203993368*x^8 + 449537120*x^6 + 458498736*x^4 + 162171072*x^2 + 8608032, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 + 164*x^18 + 10578*x^16 + 338824*x^14 + 5621264*x^12 + 47086368*x^10 + 203993368*x^8 + 449537120*x^6 + 458498736*x^4 + 162171072*x^2 + 8608032);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 164*x^18 + 10578*x^16 + 338824*x^14 + 5621264*x^12 + 47086368*x^10 + 203993368*x^8 + 449537120*x^6 + 458498736*x^4 + 162171072*x^2 + 8608032);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{20}$ (as 20T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{82}) \), 4.0.141150208.4, 5.5.2825761.1, 10.10.10727651226221314048.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.1.0.1}{1} }^{20}$ $20$ $20$ ${\href{/padicField/11.10.0.1}{10} }^{2}$ ${\href{/padicField/13.10.0.1}{10} }^{2}$ $20$ ${\href{/padicField/19.10.0.1}{10} }^{2}$ ${\href{/padicField/23.5.0.1}{5} }^{4}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }^{2}$ $20$ R $20$ $20$ ${\href{/padicField/53.5.0.1}{5} }^{4}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$4$$5$$55$
\(41\) Copy content Toggle raw display 41.20.19.6$x^{20} + 369$$20$$1$$19$20T1$[\ ]_{20}$