# Properties

 Label 2.0.4.1 Degree $2$ Signature $[0, 1]$ Discriminant $-\,2^{2}$ Root discriminant $2.00$ Ramified prime $2$ Class number $1$ Class group Trivial Galois Group $C_2$ (as 2T1)

# Learn more about

Show commands for: Magma / SageMath / Pari/GP

This is the field of Gaussian rational numbers.

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 + 1)
gp: K = bnfinit(x^2 + 1, 1)

## Normalizeddefining polynomial

$$x^{2}$$ $$\mathstrut +\mathstrut 1$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $2$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[0, 1]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$-4=-\,2^{2}$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $2.00$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is Galois and abelian over $\Q$. Conductor: $$4=2^{2}$$ Dirichlet character group: $\lbrace$$\chi_{4}(1,·), \chi_{4}(3,·)$$\rbrace$ This is a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $0$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$a$$ (order $4$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu Regulator: $$1$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

$C_2$ (as 2T1):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A cyclic group of order 2 The 2 conjugacy class representatives for $C_2$ Character table for $C_2$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R ${\href{/LocalNumberField/3.2.0.1}{2} }$ ${\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor, Valuation(Norm(primefactor), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j], idealfactors[j]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content