Properties

Label 18.2.440...413.1
Degree $18$
Signature $[2, 8]$
Discriminant $4.406\times 10^{19}$
Root discriminant \(12.34\)
Ramified primes $23,59,251$
Class number $1$
Class group trivial
Galois group $C_2\times S_4^3.S_4$ (as 18T912)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 5*x^17 + 14*x^16 - 27*x^15 + 44*x^14 - 68*x^13 + 98*x^12 - 117*x^11 + 102*x^10 - 50*x^9 - 18*x^8 + 74*x^7 - 101*x^6 + 95*x^5 - 69*x^4 + 39*x^3 - 17*x^2 + 5*x - 1)
 
gp: K = bnfinit(y^18 - 5*y^17 + 14*y^16 - 27*y^15 + 44*y^14 - 68*y^13 + 98*y^12 - 117*y^11 + 102*y^10 - 50*y^9 - 18*y^8 + 74*y^7 - 101*y^6 + 95*y^5 - 69*y^4 + 39*y^3 - 17*y^2 + 5*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 5*x^17 + 14*x^16 - 27*x^15 + 44*x^14 - 68*x^13 + 98*x^12 - 117*x^11 + 102*x^10 - 50*x^9 - 18*x^8 + 74*x^7 - 101*x^6 + 95*x^5 - 69*x^4 + 39*x^3 - 17*x^2 + 5*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 5*x^17 + 14*x^16 - 27*x^15 + 44*x^14 - 68*x^13 + 98*x^12 - 117*x^11 + 102*x^10 - 50*x^9 - 18*x^8 + 74*x^7 - 101*x^6 + 95*x^5 - 69*x^4 + 39*x^3 - 17*x^2 + 5*x - 1)
 

\( x^{18} - 5 x^{17} + 14 x^{16} - 27 x^{15} + 44 x^{14} - 68 x^{13} + 98 x^{12} - 117 x^{11} + 102 x^{10} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(44055316944848498413\) \(\medspace = 23^{7}\cdot 59^{3}\cdot 251^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.34\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $23^{3/4}59^{1/2}251^{1/2}\approx 1278.0820739142598$
Ramified primes:   \(23\), \(59\), \(251\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1357}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{347}a^{17}-\frac{135}{347}a^{16}-\frac{133}{347}a^{15}-\frac{87}{347}a^{14}-\frac{97}{347}a^{13}+\frac{50}{347}a^{12}-\frac{156}{347}a^{11}+\frac{37}{347}a^{10}+\frac{150}{347}a^{9}-\frac{118}{347}a^{8}+\frac{54}{347}a^{7}-\frac{6}{347}a^{6}-\frac{15}{347}a^{5}-\frac{37}{347}a^{4}-\frac{117}{347}a^{3}-\frac{19}{347}a^{2}+\frac{24}{347}a+\frac{8}{347}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{467}{347}a^{17}-\frac{1973}{347}a^{16}+\frac{4860}{347}a^{15}-\frac{8358}{347}a^{14}+\frac{12997}{347}a^{13}-\frac{20025}{347}a^{12}+\frac{27431}{347}a^{11}-\frac{28872}{347}a^{10}+\frac{19388}{347}a^{9}-\frac{2709}{347}a^{8}-\frac{14340}{347}a^{7}+\frac{25305}{347}a^{6}-\frac{26437}{347}a^{5}+\frac{19850}{347}a^{4}-\frac{11264}{347}a^{3}+\frac{4660}{347}a^{2}-\frac{937}{347}a-\frac{81}{347}$, $\frac{712}{347}a^{17}-\frac{3471}{347}a^{16}+\frac{8710}{347}a^{15}-\frac{15099}{347}a^{14}+\frac{22544}{347}a^{13}-\frac{34841}{347}a^{12}+\frac{48895}{347}a^{11}-\frac{51731}{347}a^{10}+\frac{32542}{347}a^{9}-\frac{389}{347}a^{8}-\frac{27829}{347}a^{7}+\frac{43961}{347}a^{6}-\frac{44339}{347}a^{5}+\frac{32646}{347}a^{4}-\frac{17374}{347}a^{3}+\frac{7639}{347}a^{2}-\frac{1650}{347}a+\frac{144}{347}$, $a$, $\frac{267}{347}a^{17}-\frac{651}{347}a^{16}+\frac{230}{347}a^{15}+\frac{2102}{347}a^{14}-\frac{5079}{347}a^{13}+\frac{7451}{347}a^{12}-\frac{12851}{347}a^{11}+\frac{24453}{347}a^{10}-\frac{34902}{347}a^{9}+\frac{30607}{347}a^{8}-\frac{11607}{347}a^{7}-\frac{9236}{347}a^{6}+\frac{23061}{347}a^{5}-\frac{27923}{347}a^{4}+\frac{23587}{347}a^{3}-\frac{13748}{347}a^{2}+\frac{5714}{347}a-\frac{1334}{347}$, $\frac{1074}{347}a^{17}-\frac{4802}{347}a^{16}+\frac{11920}{347}a^{15}-\frac{20221}{347}a^{14}+\frac{30458}{347}a^{13}-\frac{46583}{347}a^{12}+\frac{64946}{347}a^{11}-\frac{67485}{347}a^{10}+\frac{41038}{347}a^{9}+\frac{2005}{347}a^{8}-\frac{38817}{347}a^{7}+\frac{57404}{347}a^{6}-\frac{57056}{347}a^{5}+\frac{41460}{347}a^{4}-\frac{22946}{347}a^{3}+\frac{9436}{347}a^{2}-\frac{2678}{347}a+\frac{264}{347}$, $\frac{478}{347}a^{17}-\frac{2417}{347}a^{16}+\frac{6867}{347}a^{15}-\frac{13479}{347}a^{14}+\frac{21993}{347}a^{13}-\frac{33702}{347}a^{12}+\frac{48270}{347}a^{11}-\frac{58307}{347}a^{10}+\frac{51227}{347}a^{9}-\frac{24133}{347}a^{8}-\frac{12011}{347}a^{7}+\frac{40160}{347}a^{6}-\frac{51586}{347}a^{5}+\frac{47203}{347}a^{4}-\frac{32677}{347}a^{3}+\frac{16943}{347}a^{2}-\frac{6225}{347}a+\frac{1742}{347}$, $\frac{330}{347}a^{17}-\frac{1522}{347}a^{16}+\frac{3996}{347}a^{15}-\frac{7543}{347}a^{14}+\frac{12406}{347}a^{13}-\frac{19588}{347}a^{12}+\frac{27636}{347}a^{11}-\frac{32206}{347}a^{10}+\frac{27986}{347}a^{9}-\frac{14997}{347}a^{8}-\frac{3347}{347}a^{7}+\frac{20228}{347}a^{6}-\frac{28893}{347}a^{5}+\frac{27695}{347}a^{4}-\frac{20219}{347}a^{3}+\frac{11774}{347}a^{2}-\frac{4919}{347}a+\frac{1599}{347}$, $\frac{1132}{347}a^{17}-\frac{4998}{347}a^{16}+\frac{12881}{347}a^{15}-\frac{22491}{347}a^{14}+\frac{34895}{347}a^{13}-\frac{53052}{347}a^{12}+\frac{74636}{347}a^{11}-\frac{80954}{347}a^{10}+\frac{55984}{347}a^{9}-\frac{9003}{347}a^{8}-\frac{37420}{347}a^{7}+\frac{64690}{347}a^{6}-\frac{70765}{347}a^{5}+\frac{55276}{347}a^{4}-\frac{33202}{347}a^{3}+\frac{14233}{347}a^{2}-\frac{4756}{347}a+\frac{381}{347}$, $\frac{206}{347}a^{17}-\frac{1091}{347}a^{16}+\frac{2444}{347}a^{15}-\frac{3348}{347}a^{14}+\frac{3614}{347}a^{13}-\frac{5315}{347}a^{12}+\frac{7422}{347}a^{11}-\frac{3829}{347}a^{10}-\frac{7270}{347}a^{9}+\frac{17332}{347}a^{8}-\frac{16983}{347}a^{7}+\frac{9868}{347}a^{6}-\frac{1702}{347}a^{5}-\frac{5193}{347}a^{4}+\frac{8516}{347}a^{3}-\frac{7037}{347}a^{2}+\frac{3209}{347}a-\frac{1128}{347}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 226.057810023 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 226.057810023 \cdot 1}{2\cdot\sqrt{44055316944848498413}}\cr\approx \mathstrut & 0.165458580266 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 5*x^17 + 14*x^16 - 27*x^15 + 44*x^14 - 68*x^13 + 98*x^12 - 117*x^11 + 102*x^10 - 50*x^9 - 18*x^8 + 74*x^7 - 101*x^6 + 95*x^5 - 69*x^4 + 39*x^3 - 17*x^2 + 5*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 5*x^17 + 14*x^16 - 27*x^15 + 44*x^14 - 68*x^13 + 98*x^12 - 117*x^11 + 102*x^10 - 50*x^9 - 18*x^8 + 74*x^7 - 101*x^6 + 95*x^5 - 69*x^4 + 39*x^3 - 17*x^2 + 5*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 5*x^17 + 14*x^16 - 27*x^15 + 44*x^14 - 68*x^13 + 98*x^12 - 117*x^11 + 102*x^10 - 50*x^9 - 18*x^8 + 74*x^7 - 101*x^6 + 95*x^5 - 69*x^4 + 39*x^3 - 17*x^2 + 5*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 5*x^17 + 14*x^16 - 27*x^15 + 44*x^14 - 68*x^13 + 98*x^12 - 117*x^11 + 102*x^10 - 50*x^9 - 18*x^8 + 74*x^7 - 101*x^6 + 95*x^5 - 69*x^4 + 39*x^3 - 17*x^2 + 5*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times S_4^3.S_4$ (as 18T912):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 663552
The 330 conjugacy class representatives for $C_2\times S_4^3.S_4$
Character table for $C_2\times S_4^3.S_4$

Intermediate fields

3.1.23.1, 9.3.180181103.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $18$ ${\href{/padicField/3.9.0.1}{9} }^{2}$ ${\href{/padicField/5.6.0.1}{6} }^{3}$ ${\href{/padicField/7.6.0.1}{6} }^{3}$ ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ R ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.6.0.1}{6} }$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}$ $18$ ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(23\) Copy content Toggle raw display 23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.3.1$x^{4} + 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.0.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
23.8.4.1$x^{8} + 98 x^{6} + 38 x^{5} + 3331 x^{4} - 1634 x^{3} + 44919 x^{2} - 57494 x + 224528$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(59\) Copy content Toggle raw display $\Q_{59}$$x + 57$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 57$$1$$1$$0$Trivial$[\ ]$
59.2.0.1$x^{2} + 58 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.0.1$x^{2} + 58 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.1.2$x^{2} + 59$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.0.1$x^{2} + 58 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.4.2.1$x^{4} + 116 x^{3} + 3486 x^{2} + 7076 x + 201725$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
59.4.0.1$x^{4} + 2 x^{2} + 40 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(251\) Copy content Toggle raw display $\Q_{251}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{251}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $4$$2$$2$$2$
Deg $12$$1$$12$$0$$C_{12}$$[\ ]^{12}$