Properties

Label 18.18.140...409.1
Degree $18$
Signature $[18, 0]$
Discriminant $1.402\times 10^{31}$
Root discriminant \(53.75\)
Ramified primes $3,107$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3\times D_9$ (as 18T19)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 42*x^16 - 4*x^15 + 621*x^14 + 69*x^13 - 4331*x^12 + 16005*x^10 - 3117*x^9 - 31995*x^8 + 13491*x^7 + 31560*x^6 - 20790*x^5 - 10521*x^4 + 10989*x^3 - 1728*x^2 - 216*x + 9)
 
gp: K = bnfinit(y^18 - 42*y^16 - 4*y^15 + 621*y^14 + 69*y^13 - 4331*y^12 + 16005*y^10 - 3117*y^9 - 31995*y^8 + 13491*y^7 + 31560*y^6 - 20790*y^5 - 10521*y^4 + 10989*y^3 - 1728*y^2 - 216*y + 9, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 42*x^16 - 4*x^15 + 621*x^14 + 69*x^13 - 4331*x^12 + 16005*x^10 - 3117*x^9 - 31995*x^8 + 13491*x^7 + 31560*x^6 - 20790*x^5 - 10521*x^4 + 10989*x^3 - 1728*x^2 - 216*x + 9);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 42*x^16 - 4*x^15 + 621*x^14 + 69*x^13 - 4331*x^12 + 16005*x^10 - 3117*x^9 - 31995*x^8 + 13491*x^7 + 31560*x^6 - 20790*x^5 - 10521*x^4 + 10989*x^3 - 1728*x^2 - 216*x + 9)
 

\( x^{18} - 42 x^{16} - 4 x^{15} + 621 x^{14} + 69 x^{13} - 4331 x^{12} + 16005 x^{10} - 3117 x^{9} + \cdots + 9 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[18, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(14019349946482311002129152886409\) \(\medspace = 3^{27}\cdot 107^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(53.75\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{31/18}107^{1/2}\approx 68.61210071110087$
Ramified primes:   \(3\), \(107\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{321}) \)
$\card{ \Aut(K/\Q) }$:  $9$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{9}a^{12}-\frac{1}{3}a^{10}-\frac{1}{9}a^{9}+\frac{1}{3}a^{7}+\frac{1}{9}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{9}a^{13}-\frac{1}{3}a^{11}-\frac{1}{9}a^{10}+\frac{1}{3}a^{8}+\frac{1}{9}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{11}+\frac{1}{9}a^{8}+\frac{1}{3}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{15}-\frac{1}{3}a^{10}+\frac{1}{3}a^{7}+\frac{4}{9}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{9}a^{16}-\frac{1}{3}a^{11}+\frac{1}{3}a^{8}+\frac{4}{9}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{14\!\cdots\!41}a^{17}-\frac{18\!\cdots\!97}{47\!\cdots\!47}a^{16}-\frac{112906940142943}{15\!\cdots\!49}a^{15}-\frac{76\!\cdots\!35}{14\!\cdots\!41}a^{14}-\frac{214642632258779}{15\!\cdots\!49}a^{13}+\frac{153639105527971}{47\!\cdots\!47}a^{12}-\frac{652423885436654}{14\!\cdots\!41}a^{11}+\frac{26\!\cdots\!37}{15\!\cdots\!49}a^{10}+\frac{11\!\cdots\!18}{47\!\cdots\!47}a^{9}-\frac{19\!\cdots\!53}{47\!\cdots\!47}a^{8}+\frac{12\!\cdots\!56}{47\!\cdots\!47}a^{7}+\frac{17\!\cdots\!12}{47\!\cdots\!47}a^{6}+\frac{21\!\cdots\!22}{47\!\cdots\!47}a^{5}+\frac{25\!\cdots\!21}{52\!\cdots\!83}a^{4}+\frac{47\!\cdots\!28}{15\!\cdots\!49}a^{3}+\frac{13\!\cdots\!19}{52\!\cdots\!83}a^{2}+\frac{59\!\cdots\!68}{15\!\cdots\!49}a-\frac{946120595562866}{15\!\cdots\!49}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{162882690516490}{267636428571111}a^{17}+\frac{157676766617399}{267636428571111}a^{16}-\frac{66\!\cdots\!82}{267636428571111}a^{15}-\frac{21\!\cdots\!32}{802909285713333}a^{14}+\frac{31\!\cdots\!57}{89212142857037}a^{13}+\frac{10\!\cdots\!78}{267636428571111}a^{12}-\frac{18\!\cdots\!61}{802909285713333}a^{11}-\frac{19\!\cdots\!91}{89212142857037}a^{10}+\frac{20\!\cdots\!13}{267636428571111}a^{9}+\frac{43\!\cdots\!25}{802909285713333}a^{8}-\frac{37\!\cdots\!79}{267636428571111}a^{7}-\frac{47\!\cdots\!35}{89212142857037}a^{6}+\frac{36\!\cdots\!96}{267636428571111}a^{5}+\frac{51\!\cdots\!70}{89212142857037}a^{4}-\frac{49\!\cdots\!29}{89212142857037}a^{3}+\frac{34\!\cdots\!48}{267636428571111}a^{2}+\frac{91\!\cdots\!37}{89212142857037}a-\frac{580322936699910}{89212142857037}$, $\frac{162611831584079}{24\!\cdots\!99}a^{17}+\frac{44301584496055}{802909285713333}a^{16}-\frac{22\!\cdots\!46}{802909285713333}a^{15}-\frac{61\!\cdots\!80}{24\!\cdots\!99}a^{14}+\frac{31\!\cdots\!15}{802909285713333}a^{13}+\frac{29\!\cdots\!46}{802909285713333}a^{12}-\frac{61\!\cdots\!17}{24\!\cdots\!99}a^{11}-\frac{16\!\cdots\!96}{802909285713333}a^{10}+\frac{70\!\cdots\!07}{802909285713333}a^{9}+\frac{12\!\cdots\!35}{267636428571111}a^{8}-\frac{43\!\cdots\!39}{267636428571111}a^{7}-\frac{95\!\cdots\!05}{267636428571111}a^{6}+\frac{12\!\cdots\!72}{802909285713333}a^{5}-\frac{42\!\cdots\!94}{267636428571111}a^{4}-\frac{16\!\cdots\!87}{267636428571111}a^{3}+\frac{61\!\cdots\!24}{267636428571111}a^{2}-\frac{872795870139789}{89212142857037}a-\frac{211395375764427}{89212142857037}$, $\frac{11\!\cdots\!39}{14\!\cdots\!41}a^{17}+\frac{62\!\cdots\!69}{47\!\cdots\!47}a^{16}-\frac{15\!\cdots\!25}{47\!\cdots\!47}a^{15}-\frac{80\!\cdots\!33}{14\!\cdots\!41}a^{14}+\frac{23\!\cdots\!65}{52\!\cdots\!83}a^{13}+\frac{12\!\cdots\!85}{15\!\cdots\!49}a^{12}-\frac{36\!\cdots\!27}{14\!\cdots\!41}a^{11}-\frac{70\!\cdots\!37}{15\!\cdots\!49}a^{10}+\frac{11\!\cdots\!68}{15\!\cdots\!49}a^{9}+\frac{54\!\cdots\!79}{47\!\cdots\!47}a^{8}-\frac{56\!\cdots\!25}{47\!\cdots\!47}a^{7}-\frac{63\!\cdots\!05}{47\!\cdots\!47}a^{6}+\frac{50\!\cdots\!84}{47\!\cdots\!47}a^{5}+\frac{96\!\cdots\!55}{15\!\cdots\!49}a^{4}-\frac{23\!\cdots\!57}{52\!\cdots\!83}a^{3}-\frac{61\!\cdots\!48}{15\!\cdots\!49}a^{2}+\frac{41\!\cdots\!04}{15\!\cdots\!49}a+\frac{42\!\cdots\!93}{15\!\cdots\!49}$, $\frac{94\!\cdots\!52}{14\!\cdots\!41}a^{17}+\frac{33\!\cdots\!44}{47\!\cdots\!47}a^{16}-\frac{12\!\cdots\!82}{47\!\cdots\!47}a^{15}-\frac{45\!\cdots\!76}{14\!\cdots\!41}a^{14}+\frac{17\!\cdots\!94}{47\!\cdots\!47}a^{13}+\frac{21\!\cdots\!14}{47\!\cdots\!47}a^{12}-\frac{33\!\cdots\!94}{14\!\cdots\!41}a^{11}-\frac{12\!\cdots\!00}{47\!\cdots\!47}a^{10}+\frac{37\!\cdots\!29}{47\!\cdots\!47}a^{9}+\frac{30\!\cdots\!62}{47\!\cdots\!47}a^{8}-\frac{68\!\cdots\!37}{47\!\cdots\!47}a^{7}-\frac{31\!\cdots\!47}{47\!\cdots\!47}a^{6}+\frac{66\!\cdots\!28}{47\!\cdots\!47}a^{5}+\frac{21\!\cdots\!41}{15\!\cdots\!49}a^{4}-\frac{90\!\cdots\!75}{15\!\cdots\!49}a^{3}+\frac{58\!\cdots\!81}{52\!\cdots\!83}a^{2}+\frac{25\!\cdots\!61}{15\!\cdots\!49}a-\frac{57\!\cdots\!18}{15\!\cdots\!49}$, $\frac{64\!\cdots\!06}{14\!\cdots\!41}a^{17}+\frac{25\!\cdots\!85}{47\!\cdots\!47}a^{16}-\frac{87\!\cdots\!04}{47\!\cdots\!47}a^{15}-\frac{33\!\cdots\!95}{14\!\cdots\!41}a^{14}+\frac{12\!\cdots\!02}{47\!\cdots\!47}a^{13}+\frac{52\!\cdots\!51}{15\!\cdots\!49}a^{12}-\frac{22\!\cdots\!21}{14\!\cdots\!41}a^{11}-\frac{88\!\cdots\!90}{47\!\cdots\!47}a^{10}+\frac{27\!\cdots\!44}{52\!\cdots\!83}a^{9}+\frac{22\!\cdots\!23}{47\!\cdots\!47}a^{8}-\frac{44\!\cdots\!68}{47\!\cdots\!47}a^{7}-\frac{23\!\cdots\!45}{47\!\cdots\!47}a^{6}+\frac{43\!\cdots\!64}{47\!\cdots\!47}a^{5}+\frac{21\!\cdots\!04}{15\!\cdots\!49}a^{4}-\frac{59\!\cdots\!74}{15\!\cdots\!49}a^{3}+\frac{96\!\cdots\!03}{15\!\cdots\!49}a^{2}+\frac{22\!\cdots\!94}{15\!\cdots\!49}a-\frac{85\!\cdots\!04}{15\!\cdots\!49}$, $\frac{947501337498074}{47\!\cdots\!47}a^{17}-\frac{44\!\cdots\!89}{47\!\cdots\!47}a^{16}-\frac{47\!\cdots\!02}{47\!\cdots\!47}a^{15}+\frac{16\!\cdots\!75}{47\!\cdots\!47}a^{14}+\frac{93\!\cdots\!23}{47\!\cdots\!47}a^{13}-\frac{72\!\cdots\!82}{15\!\cdots\!49}a^{12}-\frac{87\!\cdots\!17}{47\!\cdots\!47}a^{11}+\frac{12\!\cdots\!99}{47\!\cdots\!47}a^{10}+\frac{13\!\cdots\!23}{15\!\cdots\!49}a^{9}-\frac{38\!\cdots\!11}{52\!\cdots\!83}a^{8}-\frac{10\!\cdots\!08}{52\!\cdots\!83}a^{7}+\frac{56\!\cdots\!85}{47\!\cdots\!47}a^{6}+\frac{36\!\cdots\!66}{15\!\cdots\!49}a^{5}-\frac{18\!\cdots\!95}{15\!\cdots\!49}a^{4}-\frac{16\!\cdots\!19}{15\!\cdots\!49}a^{3}+\frac{25\!\cdots\!05}{52\!\cdots\!83}a^{2}+\frac{26\!\cdots\!93}{52\!\cdots\!83}a-\frac{38\!\cdots\!82}{15\!\cdots\!49}$, $\frac{52\!\cdots\!06}{14\!\cdots\!41}a^{17}+\frac{17\!\cdots\!82}{52\!\cdots\!83}a^{16}-\frac{72\!\cdots\!35}{47\!\cdots\!47}a^{15}-\frac{21\!\cdots\!04}{14\!\cdots\!41}a^{14}+\frac{10\!\cdots\!08}{47\!\cdots\!47}a^{13}+\frac{10\!\cdots\!80}{47\!\cdots\!47}a^{12}-\frac{19\!\cdots\!19}{14\!\cdots\!41}a^{11}-\frac{58\!\cdots\!55}{47\!\cdots\!47}a^{10}+\frac{22\!\cdots\!72}{47\!\cdots\!47}a^{9}+\frac{45\!\cdots\!90}{15\!\cdots\!49}a^{8}-\frac{41\!\cdots\!71}{47\!\cdots\!47}a^{7}-\frac{11\!\cdots\!55}{47\!\cdots\!47}a^{6}+\frac{41\!\cdots\!44}{47\!\cdots\!47}a^{5}-\frac{25\!\cdots\!63}{52\!\cdots\!83}a^{4}-\frac{54\!\cdots\!82}{15\!\cdots\!49}a^{3}+\frac{18\!\cdots\!05}{15\!\cdots\!49}a^{2}-\frac{87\!\cdots\!72}{15\!\cdots\!49}a-\frac{25\!\cdots\!91}{15\!\cdots\!49}$, $\frac{34\!\cdots\!46}{47\!\cdots\!47}a^{17}+\frac{35\!\cdots\!90}{47\!\cdots\!47}a^{16}-\frac{47\!\cdots\!82}{15\!\cdots\!49}a^{15}-\frac{15\!\cdots\!57}{47\!\cdots\!47}a^{14}+\frac{19\!\cdots\!12}{47\!\cdots\!47}a^{13}+\frac{22\!\cdots\!36}{47\!\cdots\!47}a^{12}-\frac{12\!\cdots\!18}{47\!\cdots\!47}a^{11}-\frac{12\!\cdots\!57}{47\!\cdots\!47}a^{10}+\frac{42\!\cdots\!32}{47\!\cdots\!47}a^{9}+\frac{10\!\cdots\!03}{15\!\cdots\!49}a^{8}-\frac{86\!\cdots\!14}{52\!\cdots\!83}a^{7}-\frac{31\!\cdots\!82}{47\!\cdots\!47}a^{6}+\frac{25\!\cdots\!69}{15\!\cdots\!49}a^{5}+\frac{49\!\cdots\!94}{52\!\cdots\!83}a^{4}-\frac{10\!\cdots\!46}{15\!\cdots\!49}a^{3}+\frac{78\!\cdots\!84}{52\!\cdots\!83}a^{2}+\frac{74\!\cdots\!88}{52\!\cdots\!83}a-\frac{10\!\cdots\!80}{15\!\cdots\!49}$, $\frac{23\!\cdots\!96}{47\!\cdots\!47}a^{17}+\frac{29\!\cdots\!01}{52\!\cdots\!83}a^{16}-\frac{96\!\cdots\!33}{47\!\cdots\!47}a^{15}-\frac{11\!\cdots\!72}{47\!\cdots\!47}a^{14}+\frac{45\!\cdots\!95}{15\!\cdots\!49}a^{13}+\frac{16\!\cdots\!21}{47\!\cdots\!47}a^{12}-\frac{86\!\cdots\!00}{47\!\cdots\!47}a^{11}-\frac{31\!\cdots\!32}{15\!\cdots\!49}a^{10}+\frac{28\!\cdots\!07}{47\!\cdots\!47}a^{9}+\frac{23\!\cdots\!04}{47\!\cdots\!47}a^{8}-\frac{17\!\cdots\!69}{15\!\cdots\!49}a^{7}-\frac{22\!\cdots\!52}{47\!\cdots\!47}a^{6}+\frac{58\!\cdots\!38}{52\!\cdots\!83}a^{5}+\frac{70\!\cdots\!91}{15\!\cdots\!49}a^{4}-\frac{23\!\cdots\!44}{52\!\cdots\!83}a^{3}+\frac{18\!\cdots\!87}{15\!\cdots\!49}a^{2}+\frac{10\!\cdots\!16}{52\!\cdots\!83}a-\frac{37\!\cdots\!38}{15\!\cdots\!49}$, $\frac{82\!\cdots\!13}{14\!\cdots\!41}a^{17}+\frac{91\!\cdots\!25}{15\!\cdots\!49}a^{16}-\frac{37\!\cdots\!19}{15\!\cdots\!49}a^{15}-\frac{36\!\cdots\!43}{14\!\cdots\!41}a^{14}+\frac{15\!\cdots\!09}{47\!\cdots\!47}a^{13}+\frac{17\!\cdots\!59}{47\!\cdots\!47}a^{12}-\frac{30\!\cdots\!67}{14\!\cdots\!41}a^{11}-\frac{10\!\cdots\!89}{47\!\cdots\!47}a^{10}+\frac{33\!\cdots\!25}{47\!\cdots\!47}a^{9}+\frac{83\!\cdots\!61}{15\!\cdots\!49}a^{8}-\frac{62\!\cdots\!12}{47\!\cdots\!47}a^{7}-\frac{24\!\cdots\!42}{47\!\cdots\!47}a^{6}+\frac{61\!\cdots\!44}{47\!\cdots\!47}a^{5}+\frac{40\!\cdots\!62}{52\!\cdots\!83}a^{4}-\frac{83\!\cdots\!04}{15\!\cdots\!49}a^{3}+\frac{18\!\cdots\!91}{15\!\cdots\!49}a^{2}+\frac{21\!\cdots\!57}{15\!\cdots\!49}a-\frac{14\!\cdots\!58}{15\!\cdots\!49}$, $\frac{13\!\cdots\!37}{14\!\cdots\!41}a^{17}+\frac{54\!\cdots\!12}{15\!\cdots\!49}a^{16}-\frac{53\!\cdots\!16}{15\!\cdots\!49}a^{15}-\frac{19\!\cdots\!99}{14\!\cdots\!41}a^{14}+\frac{18\!\cdots\!75}{52\!\cdots\!83}a^{13}+\frac{96\!\cdots\!07}{52\!\cdots\!83}a^{12}-\frac{14\!\cdots\!83}{14\!\cdots\!41}a^{11}-\frac{52\!\cdots\!19}{52\!\cdots\!83}a^{10}-\frac{26\!\cdots\!95}{15\!\cdots\!49}a^{9}+\frac{38\!\cdots\!89}{15\!\cdots\!49}a^{8}+\frac{16\!\cdots\!26}{15\!\cdots\!49}a^{7}-\frac{45\!\cdots\!65}{15\!\cdots\!49}a^{6}-\frac{62\!\cdots\!17}{47\!\cdots\!47}a^{5}+\frac{82\!\cdots\!78}{52\!\cdots\!83}a^{4}+\frac{78\!\cdots\!83}{15\!\cdots\!49}a^{3}-\frac{50\!\cdots\!53}{15\!\cdots\!49}a^{2}+\frac{12\!\cdots\!17}{52\!\cdots\!83}a+\frac{31\!\cdots\!88}{52\!\cdots\!83}$, $\frac{15\!\cdots\!19}{47\!\cdots\!47}a^{17}+\frac{12\!\cdots\!56}{47\!\cdots\!47}a^{16}-\frac{66\!\cdots\!65}{47\!\cdots\!47}a^{15}-\frac{59\!\cdots\!81}{47\!\cdots\!47}a^{14}+\frac{31\!\cdots\!87}{15\!\cdots\!49}a^{13}+\frac{86\!\cdots\!63}{47\!\cdots\!47}a^{12}-\frac{63\!\cdots\!35}{47\!\cdots\!47}a^{11}-\frac{16\!\cdots\!68}{15\!\cdots\!49}a^{10}+\frac{22\!\cdots\!23}{47\!\cdots\!47}a^{9}+\frac{41\!\cdots\!03}{15\!\cdots\!49}a^{8}-\frac{43\!\cdots\!23}{47\!\cdots\!47}a^{7}-\frac{37\!\cdots\!44}{15\!\cdots\!49}a^{6}+\frac{14\!\cdots\!71}{15\!\cdots\!49}a^{5}-\frac{32\!\cdots\!68}{15\!\cdots\!49}a^{4}-\frac{58\!\cdots\!95}{15\!\cdots\!49}a^{3}+\frac{50\!\cdots\!48}{52\!\cdots\!83}a^{2}+\frac{10\!\cdots\!09}{15\!\cdots\!49}a-\frac{42\!\cdots\!80}{52\!\cdots\!83}$, $\frac{29\!\cdots\!65}{47\!\cdots\!47}a^{17}+\frac{25\!\cdots\!85}{47\!\cdots\!47}a^{16}-\frac{12\!\cdots\!71}{47\!\cdots\!47}a^{15}-\frac{11\!\cdots\!55}{47\!\cdots\!47}a^{14}+\frac{17\!\cdots\!04}{47\!\cdots\!47}a^{13}+\frac{16\!\cdots\!04}{47\!\cdots\!47}a^{12}-\frac{11\!\cdots\!82}{47\!\cdots\!47}a^{11}-\frac{96\!\cdots\!77}{47\!\cdots\!47}a^{10}+\frac{38\!\cdots\!23}{47\!\cdots\!47}a^{9}+\frac{80\!\cdots\!28}{15\!\cdots\!49}a^{8}-\frac{72\!\cdots\!26}{47\!\cdots\!47}a^{7}-\frac{23\!\cdots\!03}{47\!\cdots\!47}a^{6}+\frac{23\!\cdots\!23}{15\!\cdots\!49}a^{5}+\frac{55\!\cdots\!54}{15\!\cdots\!49}a^{4}-\frac{32\!\cdots\!86}{52\!\cdots\!83}a^{3}+\frac{71\!\cdots\!50}{52\!\cdots\!83}a^{2}+\frac{23\!\cdots\!22}{15\!\cdots\!49}a-\frac{10\!\cdots\!51}{15\!\cdots\!49}$, $\frac{16\!\cdots\!43}{47\!\cdots\!47}a^{17}+\frac{19\!\cdots\!97}{47\!\cdots\!47}a^{16}-\frac{67\!\cdots\!98}{47\!\cdots\!47}a^{15}-\frac{86\!\cdots\!92}{47\!\cdots\!47}a^{14}+\frac{93\!\cdots\!81}{47\!\cdots\!47}a^{13}+\frac{40\!\cdots\!55}{15\!\cdots\!49}a^{12}-\frac{59\!\cdots\!50}{47\!\cdots\!47}a^{11}-\frac{69\!\cdots\!25}{47\!\cdots\!47}a^{10}+\frac{64\!\cdots\!59}{15\!\cdots\!49}a^{9}+\frac{17\!\cdots\!86}{47\!\cdots\!47}a^{8}-\frac{36\!\cdots\!31}{47\!\cdots\!47}a^{7}-\frac{18\!\cdots\!46}{47\!\cdots\!47}a^{6}+\frac{12\!\cdots\!88}{15\!\cdots\!49}a^{5}+\frac{13\!\cdots\!59}{15\!\cdots\!49}a^{4}-\frac{51\!\cdots\!12}{15\!\cdots\!49}a^{3}+\frac{10\!\cdots\!91}{15\!\cdots\!49}a^{2}+\frac{13\!\cdots\!92}{15\!\cdots\!49}a-\frac{58\!\cdots\!17}{15\!\cdots\!49}$, $\frac{49\!\cdots\!55}{52\!\cdots\!83}a^{17}+\frac{45\!\cdots\!36}{47\!\cdots\!47}a^{16}-\frac{60\!\cdots\!86}{15\!\cdots\!49}a^{15}-\frac{67\!\cdots\!62}{15\!\cdots\!49}a^{14}+\frac{25\!\cdots\!19}{47\!\cdots\!47}a^{13}+\frac{29\!\cdots\!41}{47\!\cdots\!47}a^{12}-\frac{54\!\cdots\!96}{15\!\cdots\!49}a^{11}-\frac{16\!\cdots\!76}{47\!\cdots\!47}a^{10}+\frac{54\!\cdots\!53}{47\!\cdots\!47}a^{9}+\frac{13\!\cdots\!72}{15\!\cdots\!49}a^{8}-\frac{11\!\cdots\!07}{52\!\cdots\!83}a^{7}-\frac{41\!\cdots\!46}{47\!\cdots\!47}a^{6}+\frac{10\!\cdots\!44}{52\!\cdots\!83}a^{5}+\frac{22\!\cdots\!04}{15\!\cdots\!49}a^{4}-\frac{13\!\cdots\!41}{15\!\cdots\!49}a^{3}+\frac{94\!\cdots\!48}{52\!\cdots\!83}a^{2}+\frac{10\!\cdots\!66}{52\!\cdots\!83}a-\frac{11\!\cdots\!90}{15\!\cdots\!49}$, $\frac{13\!\cdots\!27}{47\!\cdots\!47}a^{17}+\frac{11\!\cdots\!44}{47\!\cdots\!47}a^{16}-\frac{55\!\cdots\!60}{47\!\cdots\!47}a^{15}-\frac{17\!\cdots\!82}{15\!\cdots\!49}a^{14}+\frac{25\!\cdots\!87}{15\!\cdots\!49}a^{13}+\frac{73\!\cdots\!34}{47\!\cdots\!47}a^{12}-\frac{52\!\cdots\!76}{52\!\cdots\!83}a^{11}-\frac{13\!\cdots\!61}{15\!\cdots\!49}a^{10}+\frac{15\!\cdots\!85}{47\!\cdots\!47}a^{9}+\frac{96\!\cdots\!02}{47\!\cdots\!47}a^{8}-\frac{26\!\cdots\!34}{47\!\cdots\!47}a^{7}-\frac{93\!\cdots\!86}{52\!\cdots\!83}a^{6}+\frac{27\!\cdots\!06}{52\!\cdots\!83}a^{5}-\frac{13\!\cdots\!10}{15\!\cdots\!49}a^{4}-\frac{32\!\cdots\!11}{15\!\cdots\!49}a^{3}+\frac{94\!\cdots\!37}{15\!\cdots\!49}a^{2}+\frac{24\!\cdots\!36}{15\!\cdots\!49}a-\frac{39\!\cdots\!49}{52\!\cdots\!83}$, $\frac{23\!\cdots\!13}{47\!\cdots\!47}a^{17}+\frac{19\!\cdots\!15}{47\!\cdots\!47}a^{16}-\frac{32\!\cdots\!02}{15\!\cdots\!49}a^{15}-\frac{88\!\cdots\!75}{47\!\cdots\!47}a^{14}+\frac{13\!\cdots\!17}{47\!\cdots\!47}a^{13}+\frac{42\!\cdots\!06}{15\!\cdots\!49}a^{12}-\frac{90\!\cdots\!48}{47\!\cdots\!47}a^{11}-\frac{71\!\cdots\!30}{47\!\cdots\!47}a^{10}+\frac{10\!\cdots\!13}{15\!\cdots\!49}a^{9}+\frac{16\!\cdots\!76}{47\!\cdots\!47}a^{8}-\frac{58\!\cdots\!04}{47\!\cdots\!47}a^{7}-\frac{43\!\cdots\!61}{15\!\cdots\!49}a^{6}+\frac{19\!\cdots\!75}{15\!\cdots\!49}a^{5}-\frac{51\!\cdots\!15}{52\!\cdots\!83}a^{4}-\frac{26\!\cdots\!88}{52\!\cdots\!83}a^{3}+\frac{25\!\cdots\!11}{15\!\cdots\!49}a^{2}+\frac{16\!\cdots\!84}{15\!\cdots\!49}a-\frac{20\!\cdots\!22}{52\!\cdots\!83}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 14865346201.2 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 14865346201.2 \cdot 1}{2\cdot\sqrt{14019349946482311002129152886409}}\cr\approx \mathstrut & 0.520380502318 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 42*x^16 - 4*x^15 + 621*x^14 + 69*x^13 - 4331*x^12 + 16005*x^10 - 3117*x^9 - 31995*x^8 + 13491*x^7 + 31560*x^6 - 20790*x^5 - 10521*x^4 + 10989*x^3 - 1728*x^2 - 216*x + 9)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 42*x^16 - 4*x^15 + 621*x^14 + 69*x^13 - 4331*x^12 + 16005*x^10 - 3117*x^9 - 31995*x^8 + 13491*x^7 + 31560*x^6 - 20790*x^5 - 10521*x^4 + 10989*x^3 - 1728*x^2 - 216*x + 9, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 42*x^16 - 4*x^15 + 621*x^14 + 69*x^13 - 4331*x^12 + 16005*x^10 - 3117*x^9 - 31995*x^8 + 13491*x^7 + 31560*x^6 - 20790*x^5 - 10521*x^4 + 10989*x^3 - 1728*x^2 - 216*x + 9);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 42*x^16 - 4*x^15 + 621*x^14 + 69*x^13 - 4331*x^12 + 16005*x^10 - 3117*x^9 - 31995*x^8 + 13491*x^7 + 31560*x^6 - 20790*x^5 - 10521*x^4 + 10989*x^3 - 1728*x^2 - 216*x + 9);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times D_9$ (as 18T19):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 18 conjugacy class representatives for $C_3\times D_9$
Character table for $C_3\times D_9$

Intermediate fields

\(\Q(\sqrt{321}) \), 3.3.321.1 x3, 6.6.33076161.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 27 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }^{2}$ R ${\href{/padicField/5.9.0.1}{9} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }^{3}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.9.0.1}{9} }^{2}$ ${\href{/padicField/17.9.0.1}{9} }^{2}$ ${\href{/padicField/19.9.0.1}{9} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.9.0.1}{9} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }^{3}$ ${\href{/padicField/43.6.0.1}{6} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{9}$ ${\href{/padicField/59.3.0.1}{3} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.9.15$x^{6} + 6 x^{5} + 6 x^{4} + 3$$6$$1$$9$$S_3\times C_3$$[3/2, 2]_{2}$
3.6.9.15$x^{6} + 6 x^{5} + 6 x^{4} + 3$$6$$1$$9$$S_3\times C_3$$[3/2, 2]_{2}$
3.6.9.15$x^{6} + 6 x^{5} + 6 x^{4} + 3$$6$$1$$9$$S_3\times C_3$$[3/2, 2]_{2}$
\(107\) Copy content Toggle raw display 107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$
107.2.1.1$x^{2} + 214$$2$$1$$1$$C_2$$[\ ]_{2}$